Page title matches

  • [[Discrete-time_Fourier_transform_info|Discrete-time (DT) Fourier Transforms]] Pairs and Properties ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse
    7 KB (1,037 words) - 21:05, 4 March 2015
  • '''Discrete Time (DT) Signals''' ...time signal there will be time periods of n where you do not have a value. DT signals are represented using the form <math>x[n]</math>. Discrete signals
    3 KB (516 words) - 17:03, 2 December 2018
  • 2 KB (263 words) - 11:13, 22 January 2018
  • =CT and DT Convolution Examples= ...course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain
    5 KB (985 words) - 12:38, 30 November 2018
  • ..._\infty</math> and the power <math class="inline">P_\infty</math> of this DT signal:
    1 KB (196 words) - 19:39, 1 December 2018

Page text matches

  • <math>=\frac{1}{2}\int_0^{2\pi}(1+cos(2t))dt</math> <math>=\frac{1}{2\pi-0}\frac{1}{2}\int_0^{2\pi}(1+cos(2t))dt</math>
    1,007 B (151 words) - 13:45, 24 February 2015
  • <math>E_\infty(x(t)) = \int_{-\infty}^\infty |x(t)|^2\,dt</math> ...>P_\infty(x(t)) = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |x(t)|^2\,dt)</math>
    4 KB (734 words) - 15:54, 25 February 2015
  • <math>E\infty=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E\infty=\int_{-\infty}^\infty |\sqrt{t}|^2\,dt=\int_0^\infty t\,dt</math> (due to sqrt limiting to positive Real numbers)
    1 KB (261 words) - 15:09, 25 February 2015
  • ...nt_{-\infty}^{\infty}|t| dt = \int_{-\infty}^{0}-t dt+\int_{0}^{\infty} t dt=\infty+\infty=\infty.</math> ...\rightarrow \infty} \frac{1}{2T}\left( \int_{-T}^{0} -t dt+\int_{0}^{T} t dt\right) =limit_{T\rightarrow \infty} \frac{1}{2T}\left( \frac{T^2}{2}+\frac{
    6 KB (975 words) - 15:35, 25 February 2015
  • <math>E\infty=\int_{-\infty}^\infty |2tu(t)|dt</math> <span style="color:blue"> (*) </span> <math>P\infty=\lim_{T \to \infty}\frac{1}{2*T}\int_{-T}^T|2tu(t)|dt</math>
    2 KB (408 words) - 17:20, 25 February 2015
  • <math>E_\infty = \int_{-\infty}^\infty |tu(t)|^2\,dt = \int_{0}^\infty t^2\,dt=\infty</math> ...t_{-T}^T |tu(t)|^2\,dt = lim_{T \to \infty} \ \frac{1}{2T} \int_{0}^T t^2\,dt =\frac{\infty}{\infty}=1</math>
    1 KB (241 words) - 17:06, 25 February 2015
  • <math>E_{\infty}=\int_{-\infty}^\infty |x(t)|^2\,dt</math> <math>E_{\infty}=\int_{-\infty}^\infty |2t^2|^2\,dt</math>
    2 KB (415 words) - 17:05, 25 February 2015
  • <math>E_\infty = \int_{-\infty}^\infty |5sin(t)|^2\,dt</math> <math>E_\infty = \int_{-\infty}^\infty 25sin(t)^2 \,dt</math>
    3 KB (432 words) - 17:55, 25 February 2015
  • **[[Table DT Fourier Transforms|Discrete-time Fourier Transform Pairs and Properties]] (
    3 KB (294 words) - 15:44, 12 March 2015
  • |<math>F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ </math> | <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math>
    29 KB (4,474 words) - 13:58, 22 May 2015
  • ...info)]] CT signal energy ||<math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math> ...\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
    2 KB (307 words) - 14:54, 25 February 2015
  • ...l{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math> | <math>\frac{d^{n}x(t)}{dt^{n}}</math>
    8 KB (1,130 words) - 11:45, 24 August 2016
  • | align="right" style="padding-right: 1em;" | DT delta function || <math>\delta[n]=\left\{ \begin{array}{ll}1, & \text{ for | align="right" style="padding-right: 1em;" | DT unit step function || <math>u[n]=\left\{ \begin{array}{ll}1, & \text{ for }
    2 KB (339 words) - 11:11, 18 September 2015
  • | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | align="right" style="padding-right: 1em;" | Inverse DT Fourier Transform
    5 KB (687 words) - 21:01, 4 March 2015
  • [[Discrete-time_Fourier_transform_info|Discrete-time (DT) Fourier Transforms]] Pairs and Properties ! colspan="2" style="background: #eee;" | DT Fourier transform and its Inverse
    7 KB (1,037 words) - 21:05, 4 March 2015
  • <math>E_\infty=\int_{-\infty}^\infty | x(t) |^2 dt </math>
    1 KB (207 words) - 16:04, 25 February 2015
  • ...\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left | x (t) \right |^2 \, dt </math>
    1 KB (220 words) - 10:49, 21 April 2015
  • p^{\prime}(t)=\frac{d}{dt}p(t)=\left( \frac{d}{dt}x(t),\frac{d}{dt}y(t)\right). \| p^{\prime}(t)\| =\sqrt{\left( \frac{d}{dt}x(t)\right)^2+\left( \frac{d}{dt}y(t)\right)^2}
    10 KB (1,752 words) - 17:02, 14 May 2015
  • ...| Below <math>x[n]</math>, <math>x_1[n]</math> and <math>x_2[n]</math> are DT signals with z-transforms <math>X(z)</math>, <math>X_1(Z)</math>, <math>X_2
    7 KB (1,018 words) - 08:55, 6 March 2015
  • E_{\infty}&=\lim_{T\rightarrow \infty}\int_{-T}^T |e^{(2jt)}|^2 dt \quad {\color{OliveGreen}\surd}\\ &= \lim_{T\rightarrow \infty}\int_{-T}^T |(cos(2t) + j*sin(2t))|^2 dt \quad {\color{OliveGreen}\text{ (You could skip this step.)}}\\
    4 KB (595 words) - 11:01, 21 April 2015
  • ...agnitude complex DT signals ECE301S11|Compute the magnitude of these three DT signals]] *Signal Power and Energy in DT
    12 KB (1,768 words) - 10:25, 22 January 2018
  • '''Discrete Time (DT) Signals''' ...time signal there will be time periods of n where you do not have a value. DT signals are represented using the form <math>x[n]</math>. Discrete signals
    3 KB (516 words) - 17:03, 2 December 2018
  • ...ce DTFT computation cosine ECE438F11|What is the Fourier transform of this DT cosine?]] ...tice DTFT computation rect ECE438F11|What is the Fourier transform of this DT rect function?]]
    2 KB (290 words) - 14:47, 1 May 2015
  • ...ce DTFT computation cosine ECE438F11|What is the Fourier transform of this DT cosine?]] ...tice DTFT computation rect ECE438F11|What is the Fourier transform of this DT rect function?]]
    6 KB (801 words) - 22:04, 19 April 2015
  • | [[CT_and_DT_Convolution_Examples| CT and DT Convolution Examples]] ..._a_CT_sinusoidal_signal|CT Cosine wave]] [[Computation_of_Energy_and_Power|DT Exponential signal]]
    4 KB (534 words) - 19:10, 4 December 2018
  • ...ty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt} \text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\al
    17 KB (2,783 words) - 01:51, 31 March 2015
  • <math>F(x)=\int_{0}^{\infty} f(t)x^{t} \ dt \ \mid \ f(t) \in \R \ \ \ \forall \ t \in (0,\infty)</math> <math>F(e^{ln(x)}) = F(x)=\int_{0}^{\infty} f(t)e^{ln(x)t} \ dt</math>
    3 KB (512 words) - 15:14, 1 May 2016
  • *Find fundamental period of DT signal: 1.11 *Even and odd parts of DT signals: 1.24b
    817 B (113 words) - 10:57, 13 June 2016
  • <math> v_1(t) = \pm \ L_1\frac{di_1}{dt} \pm \ M\frac{di_2}{dt} \ \ \ \ \ (17.4a \ \ [1])</math> <math> v_2(t) = \pm \ L_2\frac{di_2}{dt} \pm \ M\frac{di_1}{dt} \ \ \ \ \ (17.4b \ \ [1])</math>
    3 KB (474 words) - 15:17, 1 May 2016
  • ...stead of using the Riemann integral approach like we implicitly did in the DT case. ...uickly decaying impulse response are held for a time step of 1 each in the DT case, while those values are only held for an infinitesimal time in the CT
    6 KB (991 words) - 15:18, 1 May 2016
  • **[[Lecture1 ECE301Fall2008mboutin|Lecture 1]]: Intro; Example of DT signal (text) and system (enigma machine). **[[Lecture19 ECE301Fall2008mboutin|Lecture 19]]: TA Example Session w/ DT Fourier Transforms and inverses
    3 KB (328 words) - 17:57, 30 November 2018
  • Compute the compute the z-transform (including the ROC) of the following DT signal:
    8 KB (1,313 words) - 15:19, 1 May 2016
  • *[[CT_DT_Fourier_transform_ECE438F10|Summary of CT and DT Fourier transform]] ...udent_summary_CT_DT_Fourier_transform_ECE438F09| Student summary of CT and DT Fourier transform]]
    4 KB (471 words) - 19:34, 9 February 2015
  • ...e able to calculate the Fourier series coefficients of a period CT signal (DT Fourier series will NOT be on the exam). (3.28a(subparts abc), 3.22, 3.31,
    6 KB (765 words) - 13:35, 4 August 2016
  • \epsilon_0 = \int_{R_1} f(t|\omega_0)dt = \int_{z_c}^{\infty}\phi(z;0,1)dz \leq .05 \epsilon_0 = \int_{R_1} f(t|\omega_0)dt = \int_{z_c}^{\infty}\phi(z;0,1)dz = .05
    10 KB (793 words) - 10:46, 22 January 2015
  • **[[Table DT Fourier Transforms|DTFT]] | Something related to CT or DT Fourier transform
    13 KB (1,944 words) - 16:51, 13 March 2015
  • ...htarrow F_n = \frac{1}{T}\int\limits_{-T/2}^{T/2}P_T(t)e^{jn\cdot 2\pi t/T}dt</math>
    4 KB (610 words) - 18:55, 16 March 2015
  • ...l{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math> | <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
    4 KB (613 words) - 18:51, 16 March 2015
  • ...\qquad \qquad \qquad X(f)=\int\limits_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math> <math>X(2\pi f)=\int\limits_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt </math>
    3 KB (512 words) - 09:50, 14 March 2015
  • <math> {x}_{1}[n] </math> is a DT sampled signal of <math> {x}_{c}(t) </math> with sampling period <math> {T}
    3 KB (542 words) - 10:00, 14 March 2015
  • <math> \frac{\lambda(x)}{\lambda(0)} = e^{-\int_0^x \mu(t)dt}</math> <br /> \int_0^x \mu(t)dt &= -ln(\frac{\lambda_x}{\lambda(0)})\\
    7 KB (1,072 words) - 19:25, 9 February 2015
  • <math>f(t) = \frac{d\phi (t)}{dt}</math><br /> \frac{d\phi(t)}{dt} &= LM(x,y,t) \\
    14 KB (2,487 words) - 19:26, 9 February 2015
  • *Week 1-2: CT and DT Fourier Transforms == Part 2 (week 9-14): DT Systems and Applications ==
    10 KB (1,356 words) - 13:19, 19 October 2015
  • ...t e^{-i\omega t}dt=\alpha\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\alpha\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)
    6 KB (1,002 words) - 01:38, 10 March 2015
  • ...ass="inline">isf_{\mathbf{T}_{k}}\left(t\right)=\frac{dF_{\mathbf{T}_{k}}}{dt}=-\sum_{j=0}^{k-1}\frac{\left(-\lambda\right)e^{-\lambda t}\cdot\left(\lamb
    4 KB (679 words) - 01:58, 10 March 2015
  • ...{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\ma
    5 KB (939 words) - 10:37, 10 March 2015
  • |<math>F(s)=\int_{0}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ </math> | <math>u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}}</math>
    29 KB (4,417 words) - 15:53, 12 March 2015
  • ...^T | x(t) |^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-T}^T 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} 4t \Big| ^T _{-T} = \lim_{T\rig ...|^2 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \int_{-\infty}^\infty 4 dt = \lim_{T\rightarrow \infty} {1 \over {2T}} \infty= \frac{\infty}{\infty}=1
    2 KB (290 words) - 15:29, 21 April 2015
  • **[[Table DT Fourier Transforms|DTFT]] | Something related to CT or DT Fourier transform
    6 KB (845 words) - 15:37, 4 November 2016
  • It was observed that this sampling yields a DT signal that also sounds like a middle C. Perhaps the most confusing part of
    3 KB (487 words) - 11:09, 2 September 2015
  • ...f the signal. We then began the second topic: "Spectral representation of DT signals". After giving the formulas for the DTFT and the inverse DTFT, we o *[[Table DT Fourier Transforms|Table of DT Fourier transform pairs and properties]]
    3 KB (382 words) - 16:41, 31 August 2015
  • '''2)''' Write MATLAB code to play the two DT signals from part a) for 2 seconds. Briefly comment on how each signal "sou
    2 KB (395 words) - 12:13, 7 September 2015
  • a_k=\frac{1}{T_0}\int_{\tau}^{\tau+T_0} x(t)e^{-j\omega_0 kt}dt a_k&=\frac{1}{T_0}\int_{\tau}^{\tau+T_0} x(t)e^{-j\omega_0 kt}dt \\
    5 KB (812 words) - 13:08, 19 October 2015
  • ...in such a way that a band-limited interpolation of the processed (output) DT signal would be the same as y(t)? Answer yes/no. If you answered yes, expla ...ignal in such a way a band-limited interpolation of the processed (output) DT signal would be the same as y(t)? Answer yes/no. If you answered yes, expla
    3 KB (499 words) - 16:04, 22 September 2015
  • 2) Write MATLAB code to play the two DT signals from part a) for 2 seconds. Briefly comment on how each signal "sou
    4 KB (536 words) - 15:54, 25 September 2015
  • The goal of this homework is to get an intuitive understanding on how to DT signals with different sampling frequencies in an equivalent fashion. a) What is the relationship between the DT Fourier transform of x[n] and that of y[n]=x[4n]? (Give the mathematical re
    5 KB (779 words) - 18:19, 25 September 2015
  • INSTRUCTOR'S NOTE: THERE IS A MISTAKE BELOW. THE AMPLITUDE OF THE DT FILTER SHOULD NOT BE MULTIPLIED BY 1/TS. -> Corrected! ...in such a way that a band-limited interpolation of the processed (output) DT signal would be the same as y(t)? Answer yes/no. If you answered yes, expla
    3 KB (475 words) - 15:23, 20 October 2015
  • a) What is the relationship between the DT Fourier transform of x[n] and that of y[n]=x[4n]? (Give the mathematical re b) What is the relationship between the DT Fourier transform of x[n] and that of
    6 KB (945 words) - 11:40, 19 October 2015
  • Consider a DT LTI system described by the following equation Consider a DT LTI system described by the following non-recursive difference
    4 KB (625 words) - 13:17, 16 November 2015
  • ...for |f|>2.5KHz.) How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    3 KB (449 words) - 11:39, 20 November 2015
  • DT – Distance Table,<br /> Initialize DT(s,0) = 0, DT(s,1) = 0, all remaining DT(j,k) = -1<br />
    14 KB (2,351 words) - 23:21, 24 April 2016
  • *DT convolution: 2.3 *DT system stability and causality: 2.28acef
    526 B (73 words) - 21:35, 20 June 2016
  • *DT convolution: 2.21abcd *DT impulse response and convolution: 2.24ab
    707 B (103 words) - 14:02, 24 June 2016
  • * DT signals: 3.28a (subparts a and c), c * DT signals: 3.31abc
    607 B (86 words) - 00:27, 6 July 2016
  • **[[Table DT Fourier Transforms|DTFT]] | Something related to CT or DT Fourier transform
    4 KB (622 words) - 09:42, 8 January 2017
  • *Week 1-2: CT and DT Fourier Transforms == Part 2 (week 9-14): DT Systems and Applications ==
    10 KB (1,357 words) - 17:02, 14 September 2016
  • '''2)''' Write MATLAB code to play the two DT signals from part a) for 3 seconds.
    2 KB (398 words) - 11:41, 2 September 2016
  • *go over the relationship between DT signal processing and CT signal processing (for a simple filter) once more, Let x[n] be a DT signal. Let z[n]=x[2n] be a downsampling of x[n]. Let y[n] be an upsampling
    4 KB (636 words) - 08:16, 21 September 2016
  • Let x[n] be a DT signal of finite duration N and let <math>{\mathcal X}(\omega)</math> be it
    3 KB (485 words) - 17:11, 27 September 2016
  • Consider a DT LTI system described by the following equation Consider a DT LTI system described by the following non-recursive difference
    3 KB (503 words) - 15:44, 8 November 2016
  • ...m of the phoneme. How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    8 KB (1,336 words) - 15:40, 27 November 2016
  • ...for |f|>2.5KHz.) How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    3 KB (460 words) - 13:20, 18 November 2016
  • ...of the spectrum.) How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    7 KB (1,236 words) - 17:19, 29 November 2016
  • *Week 1-2: CT and DT Fourier Transforms == Part 2 (week 9-14): DT Systems and Applications ==
    10 KB (1,357 words) - 09:45, 8 January 2017
  • **[[Table DT Fourier Transforms|DTFT]]
    3 KB (421 words) - 16:18, 10 December 2017
  • **[[Table DT Fourier Transforms|DTFT]]
    3 KB (448 words) - 23:55, 23 April 2017
  • :a) understand how to implement a CT system as a DT system through sampling and reconstruction.
    4 KB (658 words) - 14:50, 1 February 2017
  • \end{bmatrix}dt}=e^{\begin{bmatrix}
    6 KB (742 words) - 07:16, 17 May 2017
  • \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} <math>\lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt}</math>
    3 KB (529 words) - 16:42, 18 May 2017
  • The linear dynamics around <math>x_e</math> is <math>\frac{d}{dt}f(x)=\begin{bmatrix}
    7 KB (1,126 words) - 05:45, 22 May 2017
  • \nabla^2\bar{E} - \mu\epsilon\big(\frac{d^2E}{dt^2}\big)\\ \cancelto{0}{\nabla^2(E_o\sin(\omega t)\hat{z})} - \mu\epsilon\frac{d^2}{dt^2}[E_o\sin(\omega t)] = 0\\
    2 KB (352 words) - 21:21, 3 June 2017
  • \frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\pa \omega - \beta \frac{dz}{dt} = 0\\
    5 KB (874 words) - 19:16, 18 June 2017
  • \big(\frac{2\pi}{\lambda}\big)\big(\frac{dx}{dt}\big)(-\sin\theta_2-\sin\theta_2) + \triangle \omega &= 0, \beta =\frac{2\p \frac{dx}{dt} = v_p = \frac{\triangle\omega}{2\beta\sin\theta_2} \cong \frac{2\pi\cdot10
    7 KB (1,072 words) - 16:11, 11 June 2017
  • \nabla\times\bar{E} = -\frac{d\bar{B}}{dt} = \begin{vmatrix}\hat{x} & \hat{y} & \hat{z}\\\frac{\partial}{\partial y}& -\mu_0\frac{d\bar{H}}{dt} = (-\hat{x})[\beta E_0\sin(10\pi x)\sin(\omega t-\beta z)] + (\hat{z})[E_0
    4 KB (752 words) - 17:19, 11 June 2017
  • \frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\pa \omega - \beta \frac{dz}{dt} = 0\\
    5 KB (795 words) - 17:35, 11 June 2017
  • 2)<math>\oint\bar{H}\cdot dl = \int_S(J+\frac{d}{dt}\bar{D})ds\hspace{2cm}\text{ only have } H_z</math>
    4 KB (642 words) - 10:44, 18 June 2017
  • <math>\int_0^{2\pi} \int_0^a D_z rdrd\phi = Q = \int I_0 \cos(\omega t) dt</math>
    5 KB (834 words) - 11:35, 18 June 2017
  • ...\bar{r}\times\bar{F}= RF\sin\theta=RB_0\lambda(\pi a^2)\delta(t)=\frac{dL}{dt}</math> <math>\varepsilon_0(t)= L\frac{di(t)}{dt}+Ri(t)=\varepsilon_0\mu(t)</math>
    3 KB (476 words) - 11:00, 18 June 2017
  • 2) <math>\nabla\times\bar{E} = -\frac{d}{dt}B</math> <math>\oint\bar{E}\cdot dl = - \frac{d}{dt}\int_S\bar{B}\cdot ds = V_{EMF}</math>
    3 KB (591 words) - 11:21, 18 June 2017
  • 2) <math>\nabla\times\bar{E} = -\frac{d}{dt}B</math> <math>\oint\bar{E}\cdot dl = - \frac{d}{dt}\int_S\bar{B}\cdot ds = V_{EMF}</math>
    3 KB (591 words) - 11:24, 18 June 2017
  • F&= \frac{d(\hslash k)}{dt}
    2 KB (263 words) - 11:02, 6 August 2017
  • V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}
    3 KB (457 words) - 10:59, 6 August 2017
  • ...{E_F/kT}}{2\pi\alpha}kT\int_0^\infty e^{-t}\cdot (tkT)^{\frac{2}{\alpha}-1}dt\\ ...ot(kt)^{\frac{2}{\alpha}-1}\int_0^\infty e^{-t}\cdot t^{\frac{2}{\alpha}-1}dt\\
    4 KB (644 words) - 19:34, 30 July 2017
  • I_{La}&=qA\int_0^{x_n}\frac{dn}{dt}\cdot dx\\ \frac{dn}{dt} = -R=G_L
    2 KB (375 words) - 22:19, 5 August 2017
  • ...rac{dy}{dx}=y^2+y</math>, <math>k</math> is a parametre || <math>\frac{dh}{dt}=k\frac{d^2h}{dx^2}</math>, <math>k</math> is a parametre | Examples .....|| <math>ü=\frac{d^2u}{dt^2}</math>|| <math>y'=\frac{dy}{dx}</math>
    6 KB (1,070 words) - 23:06, 21 November 2017
  • ''' <big><big><big> 3.1 Separable Equation for <math>\frac{dy}{dt}=f(y)g(t)</math> </big></big></big> ''' ...d form of differential equation to use this method is like <math>\frac{dy}{dt}=f(y)g(t)</math>, where <math>f(y)</math> and <math>g(t)</math> are easy to
    10 KB (1,764 words) - 14:31, 17 November 2017
  • '''&#183;''' Find an explicit solution for <math>\frac{dy}{dt}=f(t)</math>. This is the same thing as finding the integral of <math>f(t)< '''&#183;''' <math>\frac{dy}{dt}=y^2</math>
    5 KB (852 words) - 22:39, 16 November 2017
  • ...n(t)\frac{d^ny}{dt^n}+f_{n-1}\frac{d^{n-1}y}{dt^{n-1}}+...+f_1(t)\frac{dy}{dt}+f_0(t)y=g(t)</math>, where <math>n</math> is the order.
    2 KB (283 words) - 02:01, 17 November 2017
  • ...n(t)\frac{d^ny}{dt^n}+f_{n-1}\frac{d^{n-1}y}{dt^{n-1}}+...+f_1(t)\frac{dy}{dt}+f_0(t)y=g(t)</math>, where <math>n</math> is the order. ...ion look more like a system, we rename <math>y=x_1</math>, <math>\frac{dy}{dt}=x=x_2</math>.
    4 KB (712 words) - 23:15, 21 November 2017
  • <math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math> <math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math>
    9 KB (1,504 words) - 23:12, 21 November 2017

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett