ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2005



3. (40 Points)

Consider a homogeneous Poisson point process with rate $ \lambda $ and points (event occurrence times) $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ .

(a)

Derive the pdf $ f_{k}\left(t\right) $ of the $ k $ -th point $ \mathbf{T}_{k} $ for arbitrary $ k $ .

• The cdf is $ F_{\mathbf{T}_{k}}\left(t\right)=P\left(\mathbf{T}_{k}\leq t\right)=P\left(\text{at least }k\text{ points within }t\right)=\sum_{j=k}^{\infty}\frac{e^{-\lambda t}\cdot\left(\lambda t\right)^{j}}{j!} $$ =1-P\left(\mathbf{T}_{k}>t\right)=1-P\left(\text{less than }k\text{ points within }t\right)=1-\sum_{j=0}^{k-1}\frac{e^{-\lambda t}\cdot\left(\lambda t\right)^{j}}{j!}. $

• The pdf by differentiating the cdf $ isf_{\mathbf{T}_{k}}\left(t\right)=\frac{dF_{\mathbf{T}_{k}}}{dt}=-\sum_{j=0}^{k-1}\frac{\left(-\lambda\right)e^{-\lambda t}\cdot\left(\lambda t\right)^{j}}{j!}-\sum_{j=0}^{k-1}\frac{e^{-\lambda t}\cdot j\left(\lambda t\right)^{j-1}\cdot\lambda}{j!} $$ =\lambda e^{-\lambda t}\sum_{j=0}^{k-1}\frac{\left(\lambda t\right)^{j}}{j!}-\lambda e^{-\lambda t}\sum_{j=1}^{k-1}\frac{j\left(\lambda t\right)^{j-1}}{j!}=\lambda e^{-\lambda t}\sum_{j=0}^{k-1}\frac{\left(\lambda t\right)^{j}}{j!}-\lambda e^{-\lambda t}\sum_{j=1}^{k-1}\frac{\left(\lambda t\right)^{j-1}}{\left(j-1\right)!} $$ =\lambda e^{-\lambda t}\sum_{j=0}^{k-1}\frac{\left(\lambda t\right)^{j}}{j!}-\lambda e^{-\lambda t}\sum_{j=0}^{k-2}\frac{\left(\lambda t\right)^{j}}{j!}=\lambda e^{-\lambda t}\frac{\left(\lambda t\right)^{k-1}}{\left(k-1\right)!}. $

– This is Erlang distribution.

(b)

What kind of distribution does $ \mathbf{T}_{1} $ have?

• If $ k=1 $ , then $ f_{\mathbf{T}_{1}}\left(t\right)=\lambda e^{-\lambda t} $ . Thus $ \mathbf{T}_{1} $ is a exponential random variable with parameter $ \lambda $ .

(c)

What is the conditional pdf of $ \mathbf{T}_{k} $ given $ \mathbf{T}_{k-1}=t_{0} $ , where $ t_{0}>0 $ ? (You can give the answer without derivation if you know it.)

• The conditional cdf is

$ F_{\mathbf{T}_{k}}\left(t_{k}|\mathbf{T}_{k-1}=t_{0}\right)=P\left(\mathbf{T}_{k}\leq t_{k}|\mathbf{T}_{k-1}=t_{0}\right)=P\left(N\left(t_{k},t_{0}\right)\geq1\right) $$ =1-P\left(N\left(t_{k},t_{0}\right)=0\right)=1-e^{-\lambda\left(t_{k}-t_{0}\right)}. $

• The conditional pdf by differentiating the conditional cdf is

$ \therefore f_{\mathbf{T}_{k}}\left(t_{k}|\mathbf{T}_{k-1}=t_{0}\right)=\lambda e^{-\lambda\left(t_{k}-t_{0}\right)}. $

(d)

Suppose you have a random number generator that produces independent, identically distributed (i.i.d. ) random variables $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots,\mathbf{X}_{n},\cdots $ that are uniformaly distributed on the interval $ \left(0,1\right) $ . Explain how you could use these to simulate the Poisson points $ \mathbf{T}_{1},\mathbf{T}_{2},\cdots,\mathbf{T}_{n},\cdots $ describe above. Provide as complete an explanation as possible.

• This problem is similar to QE 2003 August Problem 2.


Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch