(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
+
<center><font size= 4>
 +
'''[[ECE662]]: Statistical Pattern Recognition and Decision Making Processes'''
 +
</font size>
  
We have seen Nearest Neighbor (NN) error rate as the number of samples approaches infinity is <math>P=\int(1-\sum_{i=1}^c P^2(w_i|\vec{x}))p(\vec{x})d\vec{x}</math>
+
Spring 2008, [[user:mboutin|Prof. Boutin]]
 +
 
 +
[[Slectures|Slecture]]
 +
 
 +
<font size= 3> Collectively created by the students in [[ECE662:BoutinSpring08_OldKiwi|the class]]</font size>
 +
</center>
 +
 
 +
----
 +
=Lecture 19 Lecture notes=
 +
Jump to: [[ECE662_Pattern_Recognition_Decision_Making_Processes_Spring2008_sLecture_collective|Outline]]|
 +
[[Lecture 1 - Introduction_OldKiwi|1]]|
 +
[[Lecture 2 - Decision Hypersurfaces_OldKiwi|2]]|
 +
[[Lecture 3 - Bayes classification_OldKiwi|3]]|
 +
[[Lecture 4 - Bayes Classification_OldKiwi|4]]|
 +
[[Lecture 5 - Discriminant Functions_OldKiwi|5]]|
 +
[[Lecture 6 - Discriminant Functions_OldKiwi|6]]|
 +
[[Lecture 7 - MLE and BPE_OldKiwi|7]]|
 +
[[Lecture 8 - MLE, BPE and Linear Discriminant Functions_OldKiwi|8]]|
 +
[[Lecture 9 - Linear Discriminant Functions_OldKiwi|9]]|
 +
[[Lecture 10 - Batch Perceptron and Fisher Linear Discriminant_OldKiwi|10]]|
 +
[[Lecture 11 - Fischer's Linear Discriminant again_OldKiwi|11]]|
 +
[[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_OldKiwi|12]]|
 +
[[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|13]]| 
 +
[[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_OldKiwi|14]]|
 +
[[Lecture 15 - Parzen Window Method_OldKiwi|15]]|
 +
[[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_OldKiwi|16]]|
 +
[[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_OldKiwi|17]]|
 +
[[Lecture 18 - Nearest Neighbors Clarification Rule and Metrics(Continued)_OldKiwi|18]]|
 +
[[Lecture 19 - Nearest Neighbor Error Rates_OldKiwi|19]]|
 +
[[Lecture 20 - Density Estimation using Series Expansion and Decision Trees_OldKiwi|20]]|
 +
[[Lecture 21 - Decision Trees(Continued)_OldKiwi|21]]|
 +
[[Lecture 22 - Decision Trees and Clustering_OldKiwi|22]]|
 +
[[Lecture 23 - Spanning Trees_OldKiwi|23]]|
 +
[[Lecture 24 - Clustering and Hierarchical Clustering_OldKiwi|24]]|
 +
[[Lecture 25 - Clustering Algorithms_OldKiwi|25]]|
 +
[[Lecture 26 - Statistical Clustering Methods_OldKiwi|26]]|
 +
[[Lecture 27 - Clustering by finding valleys of densities_OldKiwi|27]]|
 +
[[Lecture 28 - Final lecture_OldKiwi|28]]
 +
----
 +
----
 +
We have seen Nearest Neighbor (NN) error rate as the number of samples approaches infinity is  
 +
 
 +
<math>P=\int(1-\sum_{i=1}^c P^2(w_i|\vec{x}))p(\vec{x})d\vec{x}</math>
  
 
We would like to be able to answer two questions:
 
We would like to be able to answer two questions:
Line 63: Line 107:
 
<math>=2P^*(e|\vec{x})-\frac{c}{c-1}(P^*(e|\vec{x}))^2</math>
 
<math>=2P^*(e|\vec{x})-\frac{c}{c-1}(P^*(e|\vec{x}))^2</math>
  
'''To get better bound''' (To be added later.)
+
'''To get better bound, observe'''  
  
[[Image:Lec19_fish_OldKiwi.PNG]]
+
<math>Var(P^*(e|\vec{x})\geq 0</math>
Figure 1
+
  
 +
<math> => \int(p^*(e|\vec x)-p^*)^2p(\vec x)dx\geq 0</math>
  
 +
<math> => \int ({p}^{*2}(e|\vec x)-2p*p*(e|\vec x)+{p}^{*2} p(\vec x)dx </math>
 +
 +
<math> => \int {p}^{*2}(e|\vec x)p(x) dx - 2p* \int p*(e| \vec x)p(\vec x)dx + {p}^{*2} \int p(\vec x)dx) \geq 0 </math>
 +
 +
(where, <math> \int p*(e|\vec x)p(\vec x)dx </math> should be changed as <math>\int p*(e|\vec x)p(\vec x)dx = p* </math> )
 +
 +
<math> \int {p}^{*2}(e|\vec x)p(\vec x) dx  \geq {p}^{*2} </math>
 +
 +
(This is equal only if variance = 0)
 +
 +
so, <math> p\leq \int (2p^*(e| \vec x)- \frac{c}{c-1} {p}^{*2}(e|\vec{x}) ) p(\vec x)dx </math>
 +
 +
<math> = 2 \int p* (e|vec x)p(\vec x) dx - \frac{c}{c-1} \int {p}^{*2}(e|\vec x)p(\vec x) dx </math>
 +
 +
<math> \leq 2p* - \frac {c}{c-1} {p}^{*2} </math>
 +
 +
<math> = (2- \frac{c}{c-1} p* ) p^* </math>
 +
 +
<math> c=2,  p^* \leq p \leq p^* (2-sp^*) </math>
 +
 +
[[Image:park213_OldKiwi.jpg]]
 +
 +
[[Image:Lec19_fish_OldKiwi.PNG]]
 +
Figure 1
 +
----
 +
Previous: [[Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics(Continued)_OldKiwi|Lecture 18]]
 +
Next:  [[Lecture_20_-_Density_Estimation_using_Series_Expansion_and_Decision_Trees_OldKiwi|Lecture 20]]
  
== Lectures ==
+
[[ECE662:BoutinSpring08_OldKiwi|Back to ECE662 Spring 2008 Prof. Boutin]]
[http://balthier.ecn.purdue.edu/index.php/Lecture_1_-_Introduction 1] [http://balthier.ecn.purdue.edu/index.php/Lecture_2_-_Decision_Hypersurfaces 2] [http://balthier.ecn.purdue.edu/index.php/Lecture_3_-_Bayes_classification 3]
+
[[Category:ECE662]]
[http://balthier.ecn.purdue.edu/index.php/Lecture_4_-_Bayes_Classification 4] [http://balthier.ecn.purdue.edu/index.php/Lecture_5_-_Discriminant_Functions 5] [http://balthier.ecn.purdue.edu/index.php/Lecture_6_-_Discriminant_Functions 6] [http://balthier.ecn.purdue.edu/index.php/Lecture_7_-_MLE_and_BPE 7] [http://balthier.ecn.purdue.edu/index.php/Lecture_8_-_MLE%2C_BPE_and_Linear_Discriminant_Functions 8] [http://balthier.ecn.purdue.edu/index.php/Lecture_9_-_Linear_Discriminant_Functions 9] [http://balthier.ecn.purdue.edu/index.php/Lecture_10_-_Batch_Perceptron_and_Fisher_Linear_Discriminant 10] [http://balthier.ecn.purdue.edu/index.php/Lecture_11_-_Fischer%27s_Linear_Discriminant_again 11] [http://balthier.ecn.purdue.edu/index.php/Lecture_12_-_Support_Vector_Machine_and_Quadratic_Optimization_Problem 12] [http://balthier.ecn.purdue.edu/index.php/Lecture_13_-_Kernel_function_for_SVMs_and_ANNs_introduction 13] [http://balthier.ecn.purdue.edu/index.php/Lecture_14_-_ANNs%2C_Non-parametric_Density_Estimation_%28Parzen_Window%29 14] [http://balthier.ecn.purdue.edu/index.php/Lecture_15_-_Parzen_Window_Method 15] [http://balthier.ecn.purdue.edu/index.php/Lecture_16_-_Parzen_Window_Method_and_K-nearest_Neighbor_Density_Estimate 16] [http://balthier.ecn.purdue.edu/index.php/Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics 17] [http://balthier.ecn.purdue.edu/index.php/Lecture_18_-_Nearest_Neighbors_Clarification_Rule_and_Metrics%28Continued%29 18]
+
[[Category:decision theory]]
[http://balthier.ecn.purdue.edu/index.php/Lecture_19_-_Nearest_Neighbor_Error_Rates 19]
+
[[Category:lecture notes]]
[http://balthier.ecn.purdue.edu/index.php/Lecture_20_-_Density_Estimation_using_Series_Expansion_and_Decision_Trees 20]
+
[[Category:pattern recognition]]
 +
[[Category:slecture]]

Latest revision as of 11:22, 10 June 2013

ECE662: Statistical Pattern Recognition and Decision Making Processes

Spring 2008, Prof. Boutin

Slecture

Collectively created by the students in the class


Lecture 19 Lecture notes

Jump to: Outline| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28



We have seen Nearest Neighbor (NN) error rate as the number of samples approaches infinity is

$ P=\int(1-\sum_{i=1}^c P^2(w_i|\vec{x}))p(\vec{x})d\vec{x} $

We would like to be able to answer two questions:

1) How good is that in terms of error rate?

2) How does it compare to Bayes, the best error rate we can achieve?

Recall error rate is $ P(e)=\int P(e|\vec{x})p(\vec{x})d\vec{x} $. For all x, Bayes rule yields minimum possible $ P(e|\vec{x})=:P^*(e|\vec{x}) $

Thus, we get the minimum $ P(e)=:P^*=\int P^*(e|\vec{x})p(\vec{x})d\vec{x} $

Claim 1: If $ P^* $ is low, then $ P\approx 2P^* $ (Assumes $ \infty $ number of samples.)

Justification: $ P^*(e|\vec{x})=1-P(w_{max}|\vec{x}) $, where $ w_{max} $ is such that $ P(w_{max}|\vec{x})\geq P(w_j|\vec{x}),\forall j $

So, $ P^* $ low => $ p^*(e|\vec{x}) $ is low for almost every x.

=> $ P(w_{max}|\vec{x}) $ is close to 1 for almost every x.

We have $ P=\int(1-\sum_{i=1}^cP^2(w_i|\vec{x}))p(\vec{x})d\vec{x} $ and for almost every x, $ 1-\sum_{i=1}^cP^2(w_i|\vec{x})\approx 1-P^2(w_{max}|\vec{x})\approx 2(1-P(w_{max}|\vec{x})) $, by Taylor expansion

$ =2(P^*(e|\vec{x}) $

=> $ P\approx\int 2P^*(e|\vec{x})p(\vec{x})d\vec{x}=2P^* $

Claim 2: $ P^*\leq P\leq (2-\frac{c}{c-1}P^*)P^* $

$ P^*\leq P $ obvious can't beat Bayes. In fact, tight!

for RHS inequality $ P=\int(1-\sum_{i=1}^cP^2(w_i|\vec{x}))p(\vec{x})d\vec{x} $

Find the lower bound for this $ \sum_{i=1}^cP^2(w_i|\vec{x}) $

Write $ \sum_{i=1}^cP^2(w_i|\vec{x})=P^2(w_m|\vec{x})+\sum_{i\neq m}P^2(w_i|\vec{x}) $

Minimize this $ \sum_{i\neq m}P^2(w_i|\vec{x}) $

under the constraint $ \sum_{i\neq m}P(w_i|\vec{x})=1-P(w_m|\vec{x})=P^*(e|\vec{x}) $

min is attained when

$ P(w_i|\vec{x})=\frac{P^*(e|\vec{x})}{c-1},\forall i $

So we have

$ \sum_{i=1}^cP^2(w_i|\vec{x})\geq (1-P^*(e|\vec{x}))^2 +(c-1)(\frac {P^*(e|\vec{x})}{c-1})^2 $

$ =(1-P^*(e|\vec{x}))^2 +\frac{(P^*(e|\vec{x}))^2}{c-1} $

$ =1-2P^*(e|\vec{x})+(P^*(e|\vec{x}))^2 +\frac{(P^*(e|\vec{x}))^2}{c-1} $

$ =1-2P^*(e|\vec{x})+\frac{c}{c-1}(P^*(e|\vec{x}))^2 $

Inside the $ \int $

$ 1-\sum_{i=1}^cP^2(w_i|\vec{x}))p(\vec{x})\leq 1-(1-2P^*(e|\vec{x})+\frac{c}{c-1}(P^*(e|\vec{x}))^2) $

$ =2P^*(e|\vec{x})-\frac{c}{c-1}(P^*(e|\vec{x}))^2 $

To get better bound, observe

$ Var(P^*(e|\vec{x})\geq 0 $

$ => \int(p^*(e|\vec x)-p^*)^2p(\vec x)dx\geq 0 $

$ => \int ({p}^{*2}(e|\vec x)-2p*p*(e|\vec x)+{p}^{*2} p(\vec x)dx $

$ => \int {p}^{*2}(e|\vec x)p(x) dx - 2p* \int p*(e| \vec x)p(\vec x)dx + {p}^{*2} \int p(\vec x)dx) \geq 0 $

(where, $ \int p*(e|\vec x)p(\vec x)dx $ should be changed as $ \int p*(e|\vec x)p(\vec x)dx = p* $ )

$ \int {p}^{*2}(e|\vec x)p(\vec x) dx \geq {p}^{*2} $

(This is equal only if variance = 0)

so, $ p\leq \int (2p^*(e| \vec x)- \frac{c}{c-1} {p}^{*2}(e|\vec{x}) ) p(\vec x)dx $

$ = 2 \int p* (e|vec x)p(\vec x) dx - \frac{c}{c-1} \int {p}^{*2}(e|\vec x)p(\vec x) dx $

$ \leq 2p* - \frac {c}{c-1} {p}^{*2} $

$ = (2- \frac{c}{c-1} p* ) p^* $

$ c=2, p^* \leq p \leq p^* (2-sp^*) $

Park213 OldKiwi.jpg

Lec19 fish OldKiwi.PNG Figure 1


Previous: Lecture 18 Next: Lecture 20

Back to ECE662 Spring 2008 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett