(Nearest Neighbors Classification Rule (Alternative Approach))
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
[http://balthier.ecn.purdue.edu/index.php/ECE662 ECE662 Main Page]
+
<center><font size= 4>
 +
'''[[ECE662]]: Statistical Pattern Recognition and Decision Making Processes'''
 +
</font size>
  
[http://balthier.ecn.purdue.edu/index.php/ECE662#Class_Lecture_Notes Class Lecture Notes]
+
Spring 2008, [[user:mboutin|Prof. Boutin]]
  
 +
[[Slectures|Slecture]]
  
 +
<font size= 3> Collectively created by the students in [[ECE662:BoutinSpring08_OldKiwi|the class]]</font size>
 +
</center>
 +
 +
----
 +
=Lecture 18 Lecture notes=
 +
Jump to: [[ECE662_Pattern_Recognition_Decision_Making_Processes_Spring2008_sLecture_collective|Outline]]|
 +
[[Lecture 1 - Introduction_OldKiwi|1]]|
 +
[[Lecture 2 - Decision Hypersurfaces_OldKiwi|2]]|
 +
[[Lecture 3 - Bayes classification_OldKiwi|3]]|
 +
[[Lecture 4 - Bayes Classification_OldKiwi|4]]|
 +
[[Lecture 5 - Discriminant Functions_OldKiwi|5]]|
 +
[[Lecture 6 - Discriminant Functions_OldKiwi|6]]|
 +
[[Lecture 7 - MLE and BPE_OldKiwi|7]]|
 +
[[Lecture 8 - MLE, BPE and Linear Discriminant Functions_OldKiwi|8]]|
 +
[[Lecture 9 - Linear Discriminant Functions_OldKiwi|9]]|
 +
[[Lecture 10 - Batch Perceptron and Fisher Linear Discriminant_OldKiwi|10]]|
 +
[[Lecture 11 - Fischer's Linear Discriminant again_OldKiwi|11]]|
 +
[[Lecture 12 - Support Vector Machine and Quadratic Optimization Problem_OldKiwi|12]]|
 +
[[Lecture 13 - Kernel function for SVMs and ANNs introduction_OldKiwi|13]]| 
 +
[[Lecture 14 - ANNs, Non-parametric Density Estimation (Parzen Window)_OldKiwi|14]]|
 +
[[Lecture 15 - Parzen Window Method_OldKiwi|15]]|
 +
[[Lecture 16 - Parzen Window Method and K-nearest Neighbor Density Estimate_OldKiwi|16]]|
 +
[[Lecture 17 - Nearest Neighbors Clarification Rule and Metrics_OldKiwi|17]]|
 +
[[Lecture 18 - Nearest Neighbors Clarification Rule and Metrics(Continued)_OldKiwi|18]]|
 +
[[Lecture 19 - Nearest Neighbor Error Rates_OldKiwi|19]]|
 +
[[Lecture 20 - Density Estimation using Series Expansion and Decision Trees_OldKiwi|20]]|
 +
[[Lecture 21 - Decision Trees(Continued)_OldKiwi|21]]|
 +
[[Lecture 22 - Decision Trees and Clustering_OldKiwi|22]]|
 +
[[Lecture 23 - Spanning Trees_OldKiwi|23]]|
 +
[[Lecture 24 - Clustering and Hierarchical Clustering_OldKiwi|24]]|
 +
[[Lecture 25 - Clustering Algorithms_OldKiwi|25]]|
 +
[[Lecture 26 - Statistical Clustering Methods_OldKiwi|26]]|
 +
[[Lecture 27 - Clustering by finding valleys of densities_OldKiwi|27]]|
 +
[[Lecture 28 - Final lecture_OldKiwi|28]]
 +
----
 +
----
 
== Nearest Neighbors Classification Rule (Alternative Approach) ==
 
== Nearest Neighbors Classification Rule (Alternative Approach) ==
  
Line 64: Line 103:
  
 
<math>P_d(e \mid \vec{x})=\int p_d(e \mid \vec{x}, \vec{x'}_d)p_d(\vec{x'}_d  \mid \vec{x})p(x)dx</math>
 
<math>P_d(e \mid \vec{x})=\int p_d(e \mid \vec{x}, \vec{x'}_d)p_d(\vec{x'}_d  \mid \vec{x})p(x)dx</math>
but <math>\lim _{d \rightarrow \infty } p_d (\vec{x'}_d \mid \vec{x})=\delta {\vec{x'}-\vec{x}}</math>
+
but <math>\lim _{d \rightarrow \infty } p_d (\vec{x'}_d \mid \vec{x})=\delta ({\vec{x' _d }-\vec{x}})</math>
  
 
because probability that sample falls into region R centered at <math>\vec{x}</math> is <math>P_{R}=\int _R p(\vec{x' _d})d \vec{x'}_d</math>.
 
because probability that sample falls into region R centered at <math>\vec{x}</math> is <math>P_{R}=\int _R p(\vec{x' _d})d \vec{x'}_d</math>.
Line 88: Line 127:
  
 
<math>\lim _{d \rightarrow \infty} p_d (e \mid \vec{x})=(1- \sum _{i=1} ^c {p(\omega _i \mid x)}^2)</math>
 
<math>\lim _{d \rightarrow \infty} p_d (e \mid \vec{x})=(1- \sum _{i=1} ^c {p(\omega _i \mid x)}^2)</math>
 +
----
 +
Previous: [[Lecture_17_-_Nearest_Neighbors_Clarification_Rule_and_Metrics_OldKiwi|Lecture 17]]
 +
Next: [[Lecture_19_-_Nearest_Neighbor_Error_Rates_OldKiwi|Lecture 19]]
 +
 +
[[ECE662:BoutinSpring08_OldKiwi|Back to ECE662 Spring 2008 Prof. Boutin]]
 +
[[Category:ECE662]]
 +
[[Category:decision theory]]
 +
[[Category:lecture notes]]
 +
[[Category:pattern recognition]]
 +
[[Category:slecture]]

Latest revision as of 11:22, 10 June 2013

ECE662: Statistical Pattern Recognition and Decision Making Processes

Spring 2008, Prof. Boutin

Slecture

Collectively created by the students in the class


Lecture 18 Lecture notes

Jump to: Outline| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26| 27| 28



Nearest Neighbors Classification Rule (Alternative Approach)

  • Find invariant coordinates

$ \varphi : \Re ^k \rightarrow \Re ^n $ such that $ \varphi (x) = \varphi (\bar x) $ for all $ x, \bar x $ which are related by a rotation & translation Do NOT trivialize!

Example: $ \varphi (x) =0 $ gives us a trivial invariant coordinate. But, you lose information about separation, since everything is mapped to zero.

Want $ \varphi (x) = \varphi (\bar x) $ $ \Leftrightarrow x, \bar x $ are related by a rotation and translation

Example: $ p=(p_1,p_2,\cdots, p_N) \in \Re ^{3 \times N} $ $ \varphi $ maps representation position of tags on body onto $ (d_{12},d_{13},d_{14},\cdots , d_{N-1, N} ) $ where $ d_{ij} $= Euclidean distance between $ p_i $ and $ p_j $

In the above example, we can reconstruct up to a rotation and translation.

WARNING: Euclidean distance in the invariant coordinate space has nothing to do with Euclidean distance or Procrustes distance in initial feature space.

Nearest Neighbor in $ \Re ^2 $ yields tessellation (tiling of floor with 2D shapes such that 1) no holes and 2) cover all of $ \Re ^2 $ ). The tessellations separate sample space into regions. Shape of cells depends on metric chosen. See Figure 1.


Figure 1 - Separation of Sample Space using Tessellations


Figure 1b - Tessellations


Example: if feature vectors are such that vectors related by a rotation belong to same class $ \rightarrow $ metric should be chosen so that tiles are rotationally symmetric. See Figure 2.


Figure 2 - Example of Vectors related by Rotations


Instead of working with (x,y) rotationally invariant, work with $ z=\sqrt{x^2 + y^2} $ (distance from origin)

How good is Nearest Neighbor rule?

  1. Training error is zero: does not measure the "goodness" of a rule
  2. Test error: want it to be equal to Bayes error rate, because this yields the minimum error

Nearest Neighbor error rate

Recall: Probability of error (error rate) on test data is $ P(e)=\int p(e \mid \vec{x}) p(\vec{x}) d\vec{x} $

Let $ P_d(e) $ be the error rate when d training samples are used.

Let $ P=\lim_{d \rightarrow \infty } P_{d}(e) $

Claim: limit error rate $ P=\int (1-\sum _{i=1} ^{c}p^2 (\omega _i \mid \vec{x}))p(x)dx $

Proof of claim: Given observation $ \vec{x} $, denode by $ \vec{x'}_d $ the nearest neighbor of $ \vec{x} $ among $ \{\vec{x}_1,\vec{x}_2, \cdots , \vec{x}_d \} $

$ P_d(e \mid \vec{x})=\int p_d(e \mid \vec{x}, \vec{x'}_d)p_d(\vec{x'}_d \mid \vec{x})p(x)dx $ but $ \lim _{d \rightarrow \infty } p_d (\vec{x'}_d \mid \vec{x})=\delta ({\vec{x' _d }-\vec{x}}) $

because probability that sample falls into region R centered at $ \vec{x} $ is $ P_{R}=\int _R p(\vec{x' _d})d \vec{x'}_d $.

So, if $ p(\vec{x}) \neq 0 $ (true almost everywhere), then probability that all samples fall outside R is $ \lim _{d \rightarrow \infty} {(1-P_{R})}^d =0 $

So, $ \lim _{d \rightarrow \infty} \vec{x'}_d = \vec{x} $ and $ p_d (\vec{x'}_d \mid \vec{x})=\delta (\vec{x'}_d -\vec{x})+\epsilon _d (\vec{x}) $ where $ \lim _{d \rightarrow \infty } \epsilon _d (x)=0 $

Now $ p_d (e \mid \vec{x}, \vec{x'}_d) $ = ?

Let $ \theta , \theta _1 , \theta _2 , \cdots, \theta _{d} $ be the class of $ x , x_1 , x_2 , \cdots , x_d $, respectively.

Using nearest neighbor rule, error if $ \theta \neq $class of $ \vec{x'}_d $$ =: \theta ' _d $

$ \Rightarrow p_d(e \mid \vec{x},\vec{x'}_d)=1-\sum_{i=1} ^ c p(\theta = \omega _i , \theta ' _d = \omega _i \mid \vec{x}, \vec{x'}_d ) $

$ =1- \sum _{i=1} ^c p(\omega _i \mid \vec{x}) p(\omega _i \mid \vec{x'} _d) $

Recall $ p_d (e \mid \vec{x}, \vec{x'}_d)p_d (\vec{x'}_d \mid \vec{x})d \vec{x'}_d $

You get: $ p_d (e \mid \vec{x})=(1-\sum _{i=1} ^c p(\omega _i \mid x) p(\omega _i \mid x) ) $ + {something that goes to zero as d goes to $ \infty $}

$ \lim _{d \rightarrow \infty} p_d (e \mid \vec{x})=(1- \sum _{i=1} ^c {p(\omega _i \mid x)}^2) $


Previous: Lecture 17 Next: Lecture 19

Back to ECE662 Spring 2008 Prof. Boutin

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010