• ...m of the phoneme. How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    8 KB (1,336 words) - 15:40, 27 November 2016
  • ...for |f|>2.5KHz.) How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    3 KB (460 words) - 13:20, 18 November 2016
  • ...of the spectrum.) How does it compare to the graph of the magnitude of the DT Fourier transform of the digital recording of the phoneme?
    7 KB (1,236 words) - 17:19, 29 November 2016
  • *Week 1-2: CT and DT Fourier Transforms == Part 2 (week 9-14): DT Systems and Applications ==
    10 KB (1,357 words) - 09:45, 8 January 2017
  • **[[Table DT Fourier Transforms|DTFT]]
    3 KB (421 words) - 16:18, 10 December 2017
  • **[[Table DT Fourier Transforms|DTFT]]
    3 KB (448 words) - 23:55, 23 April 2017
  • :a) understand how to implement a CT system as a DT system through sampling and reconstruction.
    4 KB (658 words) - 14:50, 1 February 2017
  • \end{bmatrix}dt}=e^{\begin{bmatrix}
    6 KB (742 words) - 07:16, 17 May 2017
  • \lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt} <math>\lambda_x = \lambda_0e^{-\int^x_0\mu(t)dt}</math>
    3 KB (529 words) - 16:42, 18 May 2017
  • The linear dynamics around <math>x_e</math> is <math>\frac{d}{dt}f(x)=\begin{bmatrix}
    7 KB (1,126 words) - 05:45, 22 May 2017
  • \nabla^2\bar{E} - \mu\epsilon\big(\frac{d^2E}{dt^2}\big)\\ \cancelto{0}{\nabla^2(E_o\sin(\omega t)\hat{z})} - \mu\epsilon\frac{d^2}{dt^2}[E_o\sin(\omega t)] = 0\\
    2 KB (352 words) - 21:21, 3 June 2017
  • \frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\pa \omega - \beta \frac{dz}{dt} = 0\\
    5 KB (874 words) - 19:16, 18 June 2017
  • \big(\frac{2\pi}{\lambda}\big)\big(\frac{dx}{dt}\big)(-\sin\theta_2-\sin\theta_2) + \triangle \omega &= 0, \beta =\frac{2\p \frac{dx}{dt} = v_p = \frac{\triangle\omega}{2\beta\sin\theta_2} \cong \frac{2\pi\cdot10
    7 KB (1,072 words) - 16:11, 11 June 2017
  • \nabla\times\bar{E} = -\frac{d\bar{B}}{dt} = \begin{vmatrix}\hat{x} & \hat{y} & \hat{z}\\\frac{\partial}{\partial y}& -\mu_0\frac{d\bar{H}}{dt} = (-\hat{x})[\beta E_0\sin(10\pi x)\sin(\omega t-\beta z)] + (\hat{z})[E_0
    4 KB (752 words) - 17:19, 11 June 2017
  • \frac{dz}{dt} = \frac{\triangle \omega}{\triangle \beta}= \bigg(\frac{\partial\beta}{\pa \omega - \beta \frac{dz}{dt} = 0\\
    5 KB (795 words) - 17:35, 11 June 2017
  • 2)<math>\oint\bar{H}\cdot dl = \int_S(J+\frac{d}{dt}\bar{D})ds\hspace{2cm}\text{ only have } H_z</math>
    4 KB (642 words) - 10:44, 18 June 2017
  • <math>\int_0^{2\pi} \int_0^a D_z rdrd\phi = Q = \int I_0 \cos(\omega t) dt</math>
    5 KB (834 words) - 11:35, 18 June 2017
  • ...\bar{r}\times\bar{F}= RF\sin\theta=RB_0\lambda(\pi a^2)\delta(t)=\frac{dL}{dt}</math> <math>\varepsilon_0(t)= L\frac{di(t)}{dt}+Ri(t)=\varepsilon_0\mu(t)</math>
    3 KB (476 words) - 11:00, 18 June 2017
  • 2) <math>\nabla\times\bar{E} = -\frac{d}{dt}B</math> <math>\oint\bar{E}\cdot dl = - \frac{d}{dt}\int_S\bar{B}\cdot ds = V_{EMF}</math>
    3 KB (591 words) - 11:21, 18 June 2017
  • 2) <math>\nabla\times\bar{E} = -\frac{d}{dt}B</math> <math>\oint\bar{E}\cdot dl = - \frac{d}{dt}\int_S\bar{B}\cdot ds = V_{EMF}</math>
    3 KB (591 words) - 11:24, 18 June 2017
  • F&= \frac{d(\hslash k)}{dt}
    2 KB (263 words) - 11:02, 6 August 2017
  • V(t) = \int_0^t a dt =at=\frac{qE_xt}{m^*}
    3 KB (457 words) - 10:59, 6 August 2017
  • ...{E_F/kT}}{2\pi\alpha}kT\int_0^\infty e^{-t}\cdot (tkT)^{\frac{2}{\alpha}-1}dt\\ ...ot(kt)^{\frac{2}{\alpha}-1}\int_0^\infty e^{-t}\cdot t^{\frac{2}{\alpha}-1}dt\\
    4 KB (644 words) - 19:34, 30 July 2017
  • I_{La}&=qA\int_0^{x_n}\frac{dn}{dt}\cdot dx\\ \frac{dn}{dt} = -R=G_L
    2 KB (375 words) - 22:19, 5 August 2017
  • ...rac{dy}{dx}=y^2+y</math>, <math>k</math> is a parametre || <math>\frac{dh}{dt}=k\frac{d^2h}{dx^2}</math>, <math>k</math> is a parametre | Examples .....|| <math>ü=\frac{d^2u}{dt^2}</math>|| <math>y'=\frac{dy}{dx}</math>
    6 KB (1,070 words) - 23:06, 21 November 2017
  • ''' <big><big><big> 3.1 Separable Equation for <math>\frac{dy}{dt}=f(y)g(t)</math> </big></big></big> ''' ...d form of differential equation to use this method is like <math>\frac{dy}{dt}=f(y)g(t)</math>, where <math>f(y)</math> and <math>g(t)</math> are easy to
    10 KB (1,764 words) - 14:31, 17 November 2017
  • '''&#183;''' Find an explicit solution for <math>\frac{dy}{dt}=f(t)</math>. This is the same thing as finding the integral of <math>f(t)< '''&#183;''' <math>\frac{dy}{dt}=y^2</math>
    5 KB (852 words) - 22:39, 16 November 2017
  • ...n(t)\frac{d^ny}{dt^n}+f_{n-1}\frac{d^{n-1}y}{dt^{n-1}}+...+f_1(t)\frac{dy}{dt}+f_0(t)y=g(t)</math>, where <math>n</math> is the order.
    2 KB (283 words) - 02:01, 17 November 2017
  • ...n(t)\frac{d^ny}{dt^n}+f_{n-1}\frac{d^{n-1}y}{dt^{n-1}}+...+f_1(t)\frac{dy}{dt}+f_0(t)y=g(t)</math>, where <math>n</math> is the order. ...ion look more like a system, we rename <math>y=x_1</math>, <math>\frac{dy}{dt}=x=x_2</math>.
    4 KB (712 words) - 23:15, 21 November 2017
  • <math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math> <math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math>
    9 KB (1,504 words) - 23:12, 21 November 2017
  • <math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math> <math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math>
    10 KB (1,613 words) - 23:16, 21 November 2017
  • ...Transform is defined as <math>Y(s)=L[y(t)]=\int_{0}^{\infty} y(t) e^{-st} dt</math>, which is also time function <math>y(t)</math> expressed in the "c ...\int_{0}^{\infty} e^{(2-s)t} dt=\lim_{b \to \infty} {\int_{0}^{b} e^{2-s}t dt}=\lim_{b \to \infty} {\frac{e^{2-s}t}{2-s} |_{0}^{b}}=\lim_{b \to \infty} {
    6 KB (1,071 words) - 18:26, 22 November 2017
  • ...'' Solve the ODE <math>t^2 (lnt+1) \frac{d^2y}{dt^2} + t(2lnt+1) \frac{dy}{dt} -y=0</math>, one of the solutions is <math>y=\frac{1}{t}</math>. Find a se ...^2y}{dt^2}=\frac{2x}{t^3} - \frac{2\frac{dx}{dt}}{t^2} + \frac{\frac{d^2y}{dt^2}}{t}</math>.
    7 KB (1,254 words) - 19:49, 22 November 2017
  • <math>\frac{dx_1}{dt}=f_1(t,x_1,x_2,...x_n)</math> <math>\frac{dx_2}{dt}=f_2(t,x_1,x_2,...x_n)</math>
    8 KB (1,377 words) - 04:04, 19 November 2017
  • | Table of DT Fourier series properties with proofs (yes! I'm fearless ;D ) and list of c
    4 KB (618 words) - 12:12, 1 May 2018
  • W_E = \sum_{k = 1}^{N} \int v_k i_k \, dt ...\, \textrm{s}</math> and revert to time integrals using <math>\frac{di_1}{dt} = +10 e^{-t} \, \frac{\textrm{A}}{\textrm{s}}</math>.
    13 KB (2,127 words) - 13:49, 16 January 2018
  • ...ll by the Quotient Rule or the Chain Rule + Power Rule that <math>\frac{d}{dt} \frac{a}{\sum_{k=0}^K b_k t^k} = \frac{-a\sum_{k=1}^K k b_k t^{k - 1}}{\le
    4 KB (701 words) - 18:58, 26 January 2018
  • v_1(i, T) &= \frac{d}{dT} \left[\frac{2N^2 \mu_0 w t d i}{2 t g(T) + w c}\right] \\ ...}{dT} \left(2 t g(T) + w c\right) - 2N^2 \mu_0 w t d i \left(2 t \frac{dg}{dT}\right)}{\left(2 t g(T) + w c\right)^2} \\
    2 KB (353 words) - 23:30, 16 January 2018
  • E_{\infty}&=\int_{-\infty}^\infty |\sin(2 \pi t)|^2 dt \\ &=\int_{-\infty}^\infty \sin^2(2 \pi t) dt
    2 KB (373 words) - 10:09, 22 January 2018
  • E_{\infty}&=\int_{-\infty}^\infty |e^{-2\pi jt}|^2 dt \\ &=\int_{-\infty}^\infty e^{-2\pi jt} * e^{2\pi jt} dt \\
    2 KB (229 words) - 10:22, 22 January 2018
  • v_1(t) &= \frac{d}{dt} \frac{1}{2}N^2 \mu_0 \ell (\cancelto{0}{i_1(t)} + i_2(t)) G(g) \\ v_1(t) &= \frac{1}{2}N^2 \mu_0 \ell G(g) \frac{d}{dt} \left[I_2 \cos(\omega_e t)\right] \\
    2 KB (311 words) - 14:22, 22 January 2018
  • v_2(t) &= \frac{\mu_0 w \ell}{3 g} \frac{d}{dt} \left[N_1 N_2 i_1(t) + 2N_2^2 i_2(t)\right] \\ v_2(t) &= \frac{\mu_0 w \ell}{3 g} \frac{d}{dt} \left[N_1 N_2 I_1 \cos(\omega_e t) + 2N_2^2 I_2 \cos(\omega_e t)\right] \\
    5 KB (867 words) - 16:05, 26 January 2018
  • ...{f,j}</math>, then it can be said that <math>W_{e,j} = \int e_{f,j} i_j \, dt</math> since the energy in a circuit is the product of the voltage and curr W_f = \int \sum_{j=1}^J e_{f,j} i_j \, dt - \int f_e \, dx
    7 KB (1,270 words) - 14:25, 12 February 2018
  • | Duality || '''''NO DUALITY IN DT''''' || '''''NO DUALITY IN DT'''''<br />
    7 KB (1,166 words) - 13:20, 26 March 2018
  • ...) and often require conversion from continuous time (CT) to discrete time (DT) for analysis.
    12 KB (1,702 words) - 20:48, 9 April 2018
  • <math>\chi (- \omega ) = \int_{-\infty}^{\infty} x(t) e^{ \jmath (-\omega) t} dt </math> ...hi (- \omega ) = \int_{-\infty}^{\infty} x(-\tau) e^{ \jmath \omega \tau } dt </math>
    6 KB (1,010 words) - 18:04, 20 April 2018
  • ...c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/> ...y}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><br/>
    3 KB (669 words) - 22:52, 22 April 2018
  • Enjoy this tutorial of DT and CT convolutions (with examples!!!)
    329 B (47 words) - 10:19, 26 April 2018
  • v_1(t) &= L_s \frac{d}{dt} \left[10 \cos\left(\omega_1 t\right) \, \text{A}\right] \\
    5 KB (816 words) - 15:22, 4 August 2018
  • ...k{F}(ax(t) + by(t)) = \int_{-\infty}^{\infty}[ax(t) + by(t)]e^{-j\omega t} dt</math><br /> ...\infty}ax(t)e^{-j\omega t} dt + \int_{-\infty}^{\infty}by(t)e^{-j\omega t} dt</math><br />
    5 KB (873 words) - 00:52, 15 November 2018

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn