ECE 201: Linear Circuit Analysis I

Professor Peleato, Spring 2015


Message area:

  • The main webpage for the course is in Blackboard. This webpage only contains supplemental materials (optional).

Course Information

  • Instructor: Prof. Peleato
    • Email: bpeleato at purdue dot you know what
    • Office: MSEE 233C
    • Office hours: MW 10:20-12.
  • Teaching Assistant:
    • ECE201 related questions: Anantha Raghuraman (araghura at purdue dot you know what)
    • Rhea related questions: Huizhi Lu (huizhilu at purdue dot you know what)
  • Course Syllabus
  • What past students are saying about ECE201

A bonus point opportunity

Students in ECE201-004 Spring 2015 have the opportunity to earn bonus points by creating exercises (i.e. practice problems) or slectures related to linear circuit analysis. These bonus points will not have a significant impact on your letter grade, but will help tilt the balance towards a higher grade if you are close to the threshold. Also, they could be the difference between an A and an A+. Keep in mind that quality is more important than quantity. The material must be original, created by you. Plagiarizing or simply copying lecture notes found on the internet will be considered cheating and will result in a significant lowering of your grade. Read Rhea's copyright policy before proceeding.

If you wish to post your material anonymously, please contact Prof. Mimi to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.

If you want to know how to edit Rhea and create your material, the easiest is to meet with Prof. Mimi and she will be happy to help you get started. Her office hours are posted here. You can also go ahead and start building your material using the Templates below. First login using your Purdue CAREER account credential (or anonymous login, when applicable) and click on the desired template. Then, once in the desired template page, click "Show Source" under the "Actions" tab, and COPY the template source code. Then, come back to this page and click the link "Create a child page" on the left-hand menu. Include the string ECE201S15 in the name for the new page (remember the name that you chose, since you will need it to create the link later). You may now paste the source code and start editing the new page. Once you are done, make sure to post a link on this page to your newly created one. You can always find the pages that you have recently edited in the "User" menu above, under "Contributions".

For Material in Text Form You must write your material using the markup language wikitext. Mathematical formulas are written in latex (see link below for examples). Circuits can be hand-drawn, scanned, and uploaded as images. See more guidelines under the corresponding templates below.

For Material in Video Form The easiest is to either videotape yourself at the blackboard or videotape your hand writing on paper. There is a lab with white board, doc cam, green screen, video editing, etc. in MSEE 393. Email Prof. Mimi (mboutin at purdue) for an appointment if interested. After some minor editing (title page, etc.), your movie will be uploaded on the Project Rhea youtube channel (just email it to Prof. Mimi) and you will need to embed it on your project page. (The code for embedding videos is on the templates below.) Prof. Mimi has resources to help you create your video, including help for the videotaping and video editing. You can also create the video on your own but please make sure to follow the guidelines listed below the corresponding template below.


Resources


Suggested topics

Feel free to create your own

Suggested topics for slectures:

  • Voltage and current
  • Ohm, power, and sign conventions
  • KVL, KCL, current and voltage division
  • Nodal Analysis
  • Mesh/Loop Analysis
  • Superposition and Linearity
  • Thevenin and Norton
  • Maximum Power Transfer (Resistive networks)
  • Inductors
  • Capacitors
  • First order circuits: step response
  • Response classification
  • Second order circuits (source free)
  • Second order circuits (constant input)
  • Operational Amplifier
  • First order circuits with op-amps
  • Phasors
  • SSS analysis
  • Frequency response (filters)
  • Complex power
  • Power factor improvement and maximum power transfer


Suggested topics (supplemental):

  • The physics behind linear circuits
  • Complex number review
  • Parallelism between SSS and resistive networks
  • Applications in the real world

Suggested Exercises (Practice Problem):


Back to ECE201

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett