Line 40: Line 40:
 
----
 
----
  
==The Theorem==
+
==Definition==
  
 +
Let <br/>
 +
<math>\begin{align}
 +
P_{\theta}(\rho) &= CTFT \{p_\theta(r)\} \\
 +
F(u,v) &= CSFT\{f(x,y)\}
 +
\end{align}</math>
  
[[Image:RT_fig1_mh.jpeg|600px|thumb|left|Fig 1: Orientation of <math>r,z</math> axes relative to <math>x,y</math> axes]]
+
where <math>\rho</math> is the frequency variable corresponding to <math>r</math> just as <math>u</math> and <math>v</math> are the frequency variables corresponding to <math>x</math> and <math>y</math> respectively.
 +
 
 +
Then<br/>
 +
<math>P_{\theta}(\rho) = F(\rho\cos(\theta),\rho\sin(\theta)) \ </math>
 +
 
 +
Recall that <math>p_{\theta}(r)</math> is the projection of image <math>f(x,y)</math> at angle <math>\theta</math>. <math>P_{\theta}(\rho)</math> is its 1-D Fourier transform. <math>F(u,v)</math> on the other hand, is the 2-D Fourier transform of image <math>f(x,y)</math>.
 +
 
 +
So essentially, the theorem tells us that <math>P_{\theta}(\rho)</math> is <math>F(u,v)</math> in polar coordinates.
 +
 
 +
[[Image:FST_fig1_mh.jpeg|400px|thumb|left|Fig 1: <math>P_{\theta}(\rho)</math> is <math>F(u,v)</math> in polar coordinates]]
 +
 
 +
 
 +
Let us look at the simple example in figure 2 to illustrate this relationship. For the given  <math>f(x,y)</math>, the projection for <math>\theta = 0</math>° is a 1-D rect function. Let us assume it is of unit area. <br/>
 +
[[Image:FST_fig2_mh.jpeg|500px|thumb|left|Fig 2: <math>p_{\theta}(r)</math> at angle <math>\theta = 0</math>°]]
 +
 
 +
 
 +
So we have that <br/>
 +
<math>\begin{align}
 +
p_{\theta}(r) |_{\theta = 0} &= rect(r) \\
 +
\Rightarrow P_{\theta}(\rho) |_{\theta = 0} &= CTFT\{p_{\theta}(r) \}|_{\theta = 0} \\
 +
&= sinc(\rho)
 +
\end{align}</math>
 +
 
 +
But <math>f(x,y)</math> is a 2-D rect so<br/>
 +
<math>\begin{align}
 +
f(x,y) &= rect(x)rect(y) \\
 +
\Rightarrow F(u,v) &= CSFT\{f(x,y)\} \\
 +
&= sinc(u)sinc(v)
 +
\end{align}</math>
 +
 
 +
Now lets convert <math>F</math> from cartesian coordinates <math>u,v</math> to polar coordinates <math>(\rho,\theta)</math> where <math>\theta = 0</math>°<br/>
 +
<math>\begin{align}
 +
F(u,v) &= sinc(u)sinc(v) \\
 +
&= sinc(\rho \cos\theta)sinc(\rho \sin\theta)|_{\theta = 0} \\
 +
&= sinc(\rho) \\
 +
&= P_{\theta}(\rho)|_{\theta = 0}
 +
\end{align}</math>
 +
 
 +
So we see that the theorem holds for the above scenario. But it does not prove the theorem, only verifies it for a particular situation. The theorem can be proved in different ways. Two of the methods are presented below.
 +
 
 +
 
 +
----
 +
 
 +
== Proof ==
 +
 
 +
=== Method 1 ===
 +
 
 +
The first method relies on plugging variable substitutions into the defintion.
 +
 
 +
By definition, <br/>
 +
<math>\begin{align}
 +
P_{\theta}(\rho) &= CTFT\{p_{\theta}(r)\} \\
 +
&= \int_{-\infty}^{\infty}p_{\theta}(r)e^{-j2\pi\rho r}dr \\
 +
&=\int_{-\infty}^{\infty} [\int_{-\infty}^{\infty}f(\mathbf{A_{\theta}}
 +
\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix}) dz]e^{-j2\pi\rho r}dr  \\
 +
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(\mathbf{A_{\theta}}
 +
\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix})e^{-j2\pi\rho r}dzdr
 +
\end{align}</math>
 +
 
 +
Next we make the following change of variables<br/>
 +
<math>\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix} = \mathbf{A_{-\theta}}\begin{bmatrix}
 +
r \\
 +
z
 +
\end{bmatrix}</math>
 +
 
 +
Notice that the Jacobian is '''<math>|{A_{-\theta}}|</math>'''<math>=1</math> since <br/>
 +
<math>\begin{align}
 +
\frac{\partial (r,z)}{\partial (x,y)}| &= det \begin{bmatrix}
 +
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\
 +
\frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \\
 +
&= det \begin{bmatrix}
 +
\frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial x} & \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial y} \\
 +
\frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial x} & \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial y} \end{bmatrix} \\
 +
&= det \begin{bmatrix} \cos\theta & \sin\theta \\
 +
-\sin\theta & \cos\theta \end{bmatrix} \\
 +
&= \cos^2\theta +  \sin^2\theta \\
 +
&=1
 +
\end{align}</math>
 +
 
 +
Then,<br/>
 +
<math> drdz = |\frac{\partial(r,z)}{\partial(x,y)}|dxdy = dxdy</math>
 +
 
 +
Also notice that <math>r=x\cos(\theta)+y\sin(\theta)</math>. So finally we have that <br/>
 +
<math>\begin{align}
 +
P_{\theta}(\rho) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi\rho[x\cos(\theta)+y\sin(\theta)]}dxdy \\
 +
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi[x\rho\cos(\theta)+y\rho\sin(\theta)]}dxdy \\
 +
&= F(\rho\cos(\theta),\rho\sin(\theta))_{\blacksquare}
 +
\end{align}</math>
 +
 
 +
 
 +
=== Method 2 ===
 +
 
 +
The second method is slightly more compact than the first.
 +
 
 +
First, let <math>\theta = 0</math>, then<br/>
 +
<math>\begin{align}
 +
p_0(r) &= \int_{-\infty}^{\infty}f(r,y)dy \\
 +
\Rightarrow P_0(\rho) &= \int_{-\infty}^{\infty}p_0(r)e^{-2\pi jr\rho}dr \\
 +
&= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}f(r,y)dy]e^{-2\pi jr\rho}dr \\
 +
&= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(r,y)e^{(-2\pi j(r\rho+y0)}drdy \\
 +
&= F(\rho,0)
 +
\end{align}</math>
 +
 
 +
By the rotation property of the CSFT, it must hold for any <math>\theta</math>.
  
  

Revision as of 15:20, 26 May 2013

sLecture

Topic 2: Tomographic Reconstruction
Intro
CT
PET
Co-ordinate Rotation
Radon Transform
Fourier Slice Theorem


The Bouman Lectures on Image Processing

A sLecture by Maliha Hossain

Subtopic 3: Fourier Slice Theorem

© 2013




Excerpt from Prof. Bouman's Lecture


Accompanying Lecture Notes


Definition

Let
$ \begin{align} P_{\theta}(\rho) &= CTFT \{p_\theta(r)\} \\ F(u,v) &= CSFT\{f(x,y)\} \end{align} $

where $ \rho $ is the frequency variable corresponding to $ r $ just as $ u $ and $ v $ are the frequency variables corresponding to $ x $ and $ y $ respectively.

Then
$ P_{\theta}(\rho) = F(\rho\cos(\theta),\rho\sin(\theta)) \ $

Recall that $ p_{\theta}(r) $ is the projection of image $ f(x,y) $ at angle $ \theta $. $ P_{\theta}(\rho) $ is its 1-D Fourier transform. $ F(u,v) $ on the other hand, is the 2-D Fourier transform of image $ f(x,y) $.

So essentially, the theorem tells us that $ P_{\theta}(\rho) $ is $ F(u,v) $ in polar coordinates.

Fig 1: $ P_{\theta}(\rho) $ is $ F(u,v) $ in polar coordinates


Let us look at the simple example in figure 2 to illustrate this relationship. For the given $ f(x,y) $, the projection for $ \theta = 0 $° is a 1-D rect function. Let us assume it is of unit area.

Fig 2: $ p_{\theta}(r) $ at angle $ \theta = 0 $°


So we have that
$ \begin{align} p_{\theta}(r) |_{\theta = 0} &= rect(r) \\ \Rightarrow P_{\theta}(\rho) |_{\theta = 0} &= CTFT\{p_{\theta}(r) \}|_{\theta = 0} \\ &= sinc(\rho) \end{align} $

But $ f(x,y) $ is a 2-D rect so
$ \begin{align} f(x,y) &= rect(x)rect(y) \\ \Rightarrow F(u,v) &= CSFT\{f(x,y)\} \\ &= sinc(u)sinc(v) \end{align} $

Now lets convert $ F $ from cartesian coordinates $ u,v $ to polar coordinates $ (\rho,\theta) $ where $ \theta = 0 $°
$ \begin{align} F(u,v) &= sinc(u)sinc(v) \\ &= sinc(\rho \cos\theta)sinc(\rho \sin\theta)|_{\theta = 0} \\ &= sinc(\rho) \\ &= P_{\theta}(\rho)|_{\theta = 0} \end{align} $

So we see that the theorem holds for the above scenario. But it does not prove the theorem, only verifies it for a particular situation. The theorem can be proved in different ways. Two of the methods are presented below.



Proof

Method 1

The first method relies on plugging variable substitutions into the defintion.

By definition,
$ \begin{align} P_{\theta}(\rho) &= CTFT\{p_{\theta}(r)\} \\ &= \int_{-\infty}^{\infty}p_{\theta}(r)e^{-j2\pi\rho r}dr \\ &=\int_{-\infty}^{\infty} [\int_{-\infty}^{\infty}f(\mathbf{A_{\theta}} \begin{bmatrix} r \\ z \end{bmatrix}) dz]e^{-j2\pi\rho r}dr \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(\mathbf{A_{\theta}} \begin{bmatrix} r \\ z \end{bmatrix})e^{-j2\pi\rho r}dzdr \end{align} $

Next we make the following change of variables
$ \begin{bmatrix} r \\ z \end{bmatrix} = \mathbf{A_{-\theta}}\begin{bmatrix} r \\ z \end{bmatrix} $

Notice that the Jacobian is $ |{A_{-\theta}}| $$ =1 $ since
$ \begin{align} \frac{\partial (r,z)}{\partial (x,y)}| &= det \begin{bmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \\ &= det \begin{bmatrix} \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial x} & \frac{\partial (x\cos(\theta)+y\sin(\theta))}{\partial y} \\ \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial x} & \frac{\partial (-x\sin(\theta)+y\cos(\theta))}{\partial y} \end{bmatrix} \\ &= det \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \\ &= \cos^2\theta + \sin^2\theta \\ &=1 \end{align} $

Then,
$ drdz = |\frac{\partial(r,z)}{\partial(x,y)}|dxdy = dxdy $

Also notice that $ r=x\cos(\theta)+y\sin(\theta) $. So finally we have that
$ \begin{align} P_{\theta}(\rho) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi\rho[x\cos(\theta)+y\sin(\theta)]}dxdy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi[x\rho\cos(\theta)+y\rho\sin(\theta)]}dxdy \\ &= F(\rho\cos(\theta),\rho\sin(\theta))_{\blacksquare} \end{align} $


Method 2

The second method is slightly more compact than the first.

First, let $ \theta = 0 $, then
$ \begin{align} p_0(r) &= \int_{-\infty}^{\infty}f(r,y)dy \\ \Rightarrow P_0(\rho) &= \int_{-\infty}^{\infty}p_0(r)e^{-2\pi jr\rho}dr \\ &= \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}f(r,y)dy]e^{-2\pi jr\rho}dr \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(r,y)e^{(-2\pi j(r\rho+y0)}drdy \\ &= F(\rho,0) \end{align} $

By the rotation property of the CSFT, it must hold for any $ \theta $.



References

  • C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to the "Bouman Lectures on Image Processing" by Maliha Hossain

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman