Line 9: Line 9:
 
</font size>
 
</font size>
  
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student JOE BLO
+
A [https://www.projectrhea.org/learning/slectures.php slecture] by [[ECE]] student Dauren Nurmaganbetov
  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  
 
Partly based on the [[2014_Fall_ECE_438_Boutin|ECE438 Fall 2014 lecture]] material of [[user:mboutin|Prof. Mireille Boutin]].  

Revision as of 17:00, 18 September 2014


Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f

A slecture by ECE student Dauren Nurmaganbetov

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



OUTLINE

  1. Introduction
  2. Theory
  3. Examples
  4. Conclusion
  5. References

Introduction

In my slecture I will explain Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f (in hertz).

Theory

  • Review of formulas used in ECE 301
CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $
Inverse Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $


  • Review of formulas used in ECE 438.
CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
Inverse Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $

Examples

1) Let's compute FT of a cosine in two different ways:
First way is by changing FT pair and changing of variable
Let 
$ \, \mathcal\omega={2\pi}f $ ,  $ \, \mathcal\omega_0={2\pi}f_0 $
Also recall that
$  \displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;for\;\;\alpha>0 $

$ x(t) \ $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
$ \cos(\omega_0 t) \ $ $ \pi \left[\delta (\omega - \omega_0) + \delta (\omega + \omega_0)\right] \ $
$ X(f)=\mathcal{X}({2\pi}f)=\pi \left[\delta ({2\pi}f - {2\pi}f_0) + \delta ( {2\pi}f+ {2\pi}f_0)\right] \ $
$ X(f)= \pi \left[\frac{1}{2\pi }\delta (f - f_0) + \frac{1}{2\pi }\delta (f + f_0)\right] \ $
$ X(f)= \frac{1}{2}\left[\delta (f - f_0) + \delta (f + f_0)\right] \ $
Second way is by direct using CTFT formula
$ X(f)= \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $
2) Let's compute FT of a rect(t)
Keep in mind that 
CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $

Conclusion

References


Post your slecture material here. Guidelines:

  • If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
  • Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
  • Feel free to add your own examples or your own material.
  • Focus on the clarity of your explanation. It must be clear, easily understandable.
  • Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
  • Type all equations using latex code between <math> </math> tags.
  • You may include graphs, pictures, animated graphics, etc.
  • You may include links to other Project Rhea pages.

IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.




(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett