Line 22: Line 22:
 
* First let's review formulas we used in 301
 
* First let's review formulas we used in 301
  
 
+
{|
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | CT Fourier Transform Pairs and Properties (frequency <span class="texhtml">ω</span> in radians per time unit) [[More on CT Fourier transform|(info)]]
 +
|-
 +
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse
 +
|-
 
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] CT Fourier Transform  
 
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] CT Fourier Transform  
 
| <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math>
 
| <math>\mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt</math>
Line 28: Line 33:
 
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] Inverse DT Fourier Transform  
 
| align="right" style="padding-right: 1em;" | [[More on CT Fourier transform|(info)]] Inverse DT Fourier Transform  
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
 
| <math>\, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\,</math>
 
+
|}
 
*This is the second bullet
 
*This is the second bullet
 
*Thi sis a [[Main_Page| link to a Rhea page]]
 
*Thi sis a [[Main_Page| link to a Rhea page]]

Revision as of 09:56, 18 September 2014


Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f

A slecture by ECE student JOE BLO

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Introduction

In my slecture I will explain Fourier transform as a function of frequency ω versus Fourier transform as a function of frequency f (in hertz).

Theory

  • First let's review formulas we used in 301
CT Fourier Transform Pairs and Properties (frequency ω in radians per time unit) (info)
Definition CT Fourier Transform and its Inverse
(info) CT Fourier Transform $ \mathcal{X}(\omega)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt $
(info) Inverse DT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{i\omega t} d \omega\, $

Example

  1. THIS IS THE FIRST ITEM
  2. THIS IS THE SECONF ITEM

Post your slecture material here. Guidelines:

  • If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
  • Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
  • Feel free to add your own examples or your own material.
  • Focus on the clarity of your explanation. It must be clear, easily understandable.
  • Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
  • Type all equations using latex code between <math> </math> tags.
  • You may include graphs, pictures, animated graphics, etc.
  • You may include links to other Project Rhea pages.

IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.




(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva