(14 intermediate revisions by one other user not shown)
Line 1: Line 1:
'''Rep Function:'''
+
[[Category:ECE438 (BoutinFall2009)]]
  
A rep function periodically repeats another function with some specified period T ( basically sampling time). Mathematically a rep operator is a function x(t) convoluted with a summation of shifted deltas:
 
  
  <math>rep_T </math> = <math>x(t)* P_T (t) </math>
+
== '''Rep Function:''' ( Class Notes from 26/08/09, [[ECE438|ECE 438]], [[user:mboutin|Prof Boutin]])==
  
                      = <math>x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>
+
A rep function periodically repeats another function with some specified period T ( basically sampling time). Mathematically a rep operator is a function x(t) convolved with a summation of shifted deltas:
  
                      = <math>\sum_{k=-\infty}^{\infty}x(t) * \delta(t-kT) </math>
+
<math> rep_T [x(t)] = x(t)* \mathrm {P_T}(t) = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>
  
                      = <math>\sum_{k=-\infty}^{\infty}x(t-kT) </math>
+
                            <math> {{=}}\sum_{\infty}^{\infty}x(\delta(t-kT) </math>        
 +
                   
 +
                            <math> {{=}}\sum_{k=-\infty}^{\infty}x(t-kT) </math>
  
 
If below is the x(t):   
 
If below is the x(t):   
Line 15: Line 16:
 
[[Image:functiona.jpg]]
 
[[Image:functiona.jpg]]
  
Then the <math>rep_T </math>x(t) looks like:
+
Then the <math>rep_T [x(t)] </math> looks like:
  
[[Image:repped.jpg]]
+
[[Image:reppeda.jpg]]
  
 
The resulting function is periodic with period T. To keep x(t) repeating without aliasing, the minimum sampling period should be <math> \geqq 2 * T </math>
 
The resulting function is periodic with period T. To keep x(t) repeating without aliasing, the minimum sampling period should be <math> \geqq 2 * T </math>
  
'''Comb Function'''
+
 
 +
== '''Comb Function''' ==
 +
 
  
 
A comb function multiplies a function with a periodic train of impulses.
 
A comb function multiplies a function with a periodic train of impulses.
 
    
 
    
     <math> comb_T </math>{x(t)} = <math> x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) </math> = <math> x(t) . P_T (t) </math>
+
     <math> comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) . \mathrm{P_T} (t) </math>
  
 
Using the same x(t) as above as our function to be multiplied with a train of impulses, we get:
 
Using the same x(t) as above as our function to be multiplied with a train of impulses, we get:
  
[[Image:]]
+
[[Image:combed.jpg]]
 +
 
  
 
'''Note''': The Fourier Transform of a <math> rep_T </math> x(t) gives the comb function of x(t) but in the frequency domain.
 
'''Note''': The Fourier Transform of a <math> rep_T </math> x(t) gives the comb function of x(t) but in the frequency domain.
Line 39: Line 43:
 
<math> \mathrm{P_T}(f) = \mathfrak{F} ( \sum_{k} \delta(t-kT)) </math>
 
<math> \mathrm{P_T}(f) = \mathfrak{F} ( \sum_{k} \delta(t-kT)) </math>
  
         <math> {{=}}  \mathfrak{F} ( \sum_{n=-\infty}^{\infty}  \left ( \frac{1}{T} \right ) exp \left ( \frac{j2nt\pi}{T} \right ) </math>
+
         <math> {{=}}  \mathfrak{F} (\sum_{n=-\infty}^{\infty}  \frac{1}{T} exp \frac{j2nt\pi}{T}  ) </math>
 +
       
 +
        <math> {{=}}  \sum_{n=-\infty}^{\infty}  \frac{1}{T} \delta( f - \frac{n}{T} ) </math>
 +
       
 +
        <math> {{=}}  \frac{1}{T} P_T (f) </math>
 +
 
 +
Therefore:
 +
 
 +
<math> \mathrm{X}(f).\frac{1}{T}P_T (f)  {{=}}  \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>
 +
 
 +
To conclude the transform relationship between the comb operator and rep operator surfaces when we take the operator's Continuous Time Fourier Transform :
 +
 
 +
<math> comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
 +
 
 +
<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] </math>
 +
----
 +
[[ ECE438 (BoutinFall2009)|Back to ECE438 (BoutinFall2009)]]

Latest revision as of 07:38, 25 August 2010


Rep Function: ( Class Notes from 26/08/09, ECE 438, Prof Boutin)

A rep function periodically repeats another function with some specified period T ( basically sampling time). Mathematically a rep operator is a function x(t) convolved with a summation of shifted deltas:

$ rep_T [x(t)] = x(t)* \mathrm {P_T}(t) = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) $

                           $  {{=}}\sum_{\infty}^{\infty}x(\delta(t-kT)  $          
                   
                           $  {{=}}\sum_{k=-\infty}^{\infty}x(t-kT)  $

If below is the x(t):

Functiona.jpg

Then the $ rep_T [x(t)] $ looks like:

Reppeda.jpg

The resulting function is periodic with period T. To keep x(t) repeating without aliasing, the minimum sampling period should be $ \geqq 2 * T $


Comb Function

A comb function multiplies a function with a periodic train of impulses.

   $  comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) = x(t) . \mathrm{P_T} (t)  $

Using the same x(t) as above as our function to be multiplied with a train of impulses, we get:

Combed.jpg


Note: The Fourier Transform of a $ rep_T $ x(t) gives the comb function of x(t) but in the frequency domain.

$ \mathfrak{F} (rep_T [x(t)]) = \mathfrak{F} ( x(t) * P_T (t) ) = \mathrm{X}(f).\mathrm{P_T}(f) $

Where

$ \mathrm{P_T}(f) = \mathfrak{F} ( \sum_{k} \delta(t-kT)) $

       $  {{=}}  \mathfrak{F} (\sum_{n=-\infty}^{\infty}  \frac{1}{T} exp \frac{j2nt\pi}{T}  )  $
       
       $  {{=}}  \sum_{n=-\infty}^{\infty}  \frac{1}{T} \delta( f - \frac{n}{T} )  $
       
       $  {{=}}  \frac{1}{T} P_T (f)  $

Therefore:

$ \mathrm{X}(f).\frac{1}{T}P_T (f) {{=}} \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] $

To conclude the transform relationship between the comb operator and rep operator surfaces when we take the operator's Continuous Time Fourier Transform :

$ comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $

$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] $


Back to ECE438 (BoutinFall2009)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett