Line 1: Line 1:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
= [[:Category:Problem_solving|Practice Question 3]], [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
= [[:Category:Problem_solving|Practice Question]] 3, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
 
On computing the inverse z-transform of a discrete-time signal.
 
On computing the inverse z-transform of a discrete-time signal.
 
----
 
----

Revision as of 09:59, 11 November 2011

Practice Question 3, ECE438 Fall 2010, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) = \log \left( 1+z \right), \quad |z|<1 $.

Hint: expand the function into a power series using either the Taylor series formula or a table of power series formulas.


Post Your answer/questions below.

The power series expansion of the given function is:

$ \begin{align} X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} \end{align} $

Substitute n = -k

$ \begin{align} X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ &= \frac{(-1)^{n}}{n} u[-n-1] \end{align} $

since it doesn't matter if the (-1) is in the num or denom.


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Next practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett