keywords: Taylor, Geometric, Binomial

Power Series

(Used in ECE301 and ECE438)

Taylor Series Formulas
Series in symbolic forms
$\text{Taylor Series in one variable } = \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n}$ (info)
$\text{Taylor Series in } d \text{ variables } =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\!$
Taylor Series to remember
$\text{Exponential } e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, \text{ for all } x\in {\mathbb C}\$
$\text{Logarithm } \ln (1+x) = \sum^{\infin}_{n=1} (-1)^{n+1}\frac{x^n}n,\text{ when }-1<x\leq 1$
$\sin x \ = \ x \ - \ \frac{x^3}{3!} \ + \ \frac{x^5}{5!} \ - \ \frac{x^7}{7!} \ + \ \cdots, \quad \text{ for } - \infty < x < \infty$
$\cos x \ = \ 1 \ - \ \frac{x^2}{2!} \ + \ \frac{x^4}{4!} \ - \ \frac{x6}{6!} \ + \ \cdots, \quad \text{ for } - \infty < x < \infty$
Geometric Series and related series
(info) $\text{Finite Geometric Series Formula } \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right.$
(info) $\text{Infinite Geometric Series Formula } \sum_{k=0}^\infty x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right.$
$\frac{x^m}{1-x} = \sum^{\infin}_{n=m} x^n, \quad\mbox{ for }|x| < 1 \text{ and } m\in\mathbb{N}_0\!$
$\frac{x}{(1-x)^2} = \sum^{\infin}_{n=1}n x^n, \quad\text{ for }|x| < 1\!$
Taylor series of Single Variable Functions
$\,f(x) \ = \ f(a) \ + \ f'(a)(x \ - \ a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n \,$
$\text{Rest of Lagrange } \qquad R_n = \frac {f^{(n)}(\zeta)(x-a)^n}{n!}$
$\text{Rest of Cauchy } \qquad R_n = \frac {f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!}$
Binomial Series
For any positive integer n:
\begin{align} (a+x)^n & = \sum_{k=0}^n \left( \begin{array}{ll}n\\k \end{array}\right) x^k a^{n-k}\\ & = a^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \binom{n}{3} a^{n-3}x^3 + \ldots + x^n \\ \end{align}
For any complex number z:
\begin{align} (a+x)^z & = a^z + za^{z-1}x + \frac {z(z-1)}{2!} a^{z-2}x^2 + \frac {z(z-1)(z-2)}{3!} a^{z-3}x^3 + \ldots \\ & = a^z + \binom{z}{1} a^{z-1}x + \binom{z}{2} a^{z-2}x^2 + \binom{z}{3} a^{z-3}x^3 + \ldots \\ \end{align}
Some particular Cases:
$(a+x)^2 \ = \ a^2 \ + \ 2ax \ + \ x^2$
$(a+x)^3 \ = \ a^3 \ + \ 3a^2x \ + \ 3ax^2 \ + \ x^3$
$(a+x)^4 \ = \ a^4 \ + \ 4a^3x \ + \ 6a^2x^2 \ + \ 4ax^3 \ + \ x^4$
$(1+x)^{-1} \ = \ 1 \ - \ x \ + \ x^2 \ - \ x^3 \ + \ x^4 \ - \ \cdots$ $-1 < x < 1 \qquad$
$(1+x)^{-2} \ = \ 1 \ - \ 2x \ + \ 3x^2 \ - \ 4x^3 \ + \ 5x^4 \ - \ \cdots$ $-1 < x < 1 \qquad$
$(1+x)^{-3} \ = \ 1 \ - \ 3x \ + \ 6x^2 \ - \ 10x^3 \ + \ 15x^4 \ - \ \cdots$ $-1 < x < 1 \qquad$
$(1+x)^{-1/2} \ = \ 1 \ - \ \frac{1}{2}x \ + \ \frac{1 \cdot 3}{2 \cdot 4}x^2 \ - \ \frac {1 \cdot 3 \cdot 5 }{2 \cdot 4 \cdot 6} x^3 \ + \ \cdots$ $-1 < x \leqq 1 \qquad$
$(1+x)^{1/2} \ = \ 1 \ + \ \frac{1}{2}x \ - \ \frac{1 }{2 \cdot\ 4}x^2 \ + \ \frac {1 \cdot 3}{2 \cdot 4 \cdot 6} x^3 \ - \ \cdots$ $-1 < x \leqq 1 \qquad$
$(1+x)^{-1/3} \ = \ 1 \ - \ \frac{1}{3}x \ + \ \frac{1 \cdot 4}{3 \cdot 6}x^2 \ - \ \frac {1 \cdot 4 \cdot 7 }{3 \cdot 6 \cdot 9} x^3 \ + \ \cdots$ $-1 < x \leqq 1 \qquad$
$(1+x)^{1/3} \ = \ 1 \ + \ \frac{1}{3}x \ - \ \frac{2}{3 \cdot 6}x^2 \ + \ \frac {2 \cdot 5 }{3 \cdot 6 \cdot 9} x^3 \ - \ \cdots$ $-1 < x \leqq 1 \qquad$
Series Expansion of Exponential functions and Logarithms
$e^x \ = \ 1 \ + \ x \ + \ \frac{x^2}{2!} \ + \ \frac{x^3}{3!} \ + \ \cdots$ $- \infty < x < \infty \qquad$
$a^x \ = \ e^{x \ln a} \ = \ 1 \ + \ x \ln a \ + \ \frac{(x \ln a)^2}{2!} \ + \ \frac{(x \ln a)^3}{3!} \ + \ \cdots$ $- \infty < x < \infty \qquad$
$\ln(1+x) \ = \ x \ - \ \frac{x^2}{2} \ + \ \frac{x^3}{3} \ - \ \frac{x^4}{4} \ + \ \cdots$ $-1 < x \leqq 1 \qquad$
$\frac{1}{2} \ln \left ( \frac {1+x}{1-x} \right ) \ = \ x \ + \ \frac{x^3}{3} \ + \ \frac {x^5}{5} \ + \ \frac{x^7}{7} \ + \ \cdots \$ $-1 < x < 1 \qquad$
$\ln x \ = \ 2 \left \{ \left ( \frac {x-1}{x+1} \right ) \ + \ \frac{1}{3} \left ( \frac {x-1}{x+1} \right ) ^3 \ + \ \frac{1}{5} \left ( \frac{x-1}{x+1} \right ) ^ 5 \ + \ \cdots \ \right \}$ $x > 0 \qquad$
$\ln x \ = \ \left ( \frac {x-1}{x} \right ) \ + \ \frac{1}{2} \left ( \frac {x-1}{x} \right ) ^2 \ + \ \frac{1}{3} \left ( \frac{x-1}{x} \right ) ^ 3 \ + \ \cdots \$ $x \geqq \frac {1}{2} \qquad$
Series Expansion of Circular functions
$\sin x \ = \ x \ - \ \frac{x^3}{3!} \ + \ \frac{x^5}{5!} \ - \ \frac{x^7}{7!} \ + \ \cdots$ $- \infty < x < \infty$
$\cos x \ = \ 1 \ - \ \frac{x^2}{2!} \ + \ \frac{x^4}{4!} \ - \ \frac{x6}{6!} \ + \ \cdots$ $- \infty < x < \infty$
$\cot x \ = \ \frac{1}{x} \ - \ \frac {x}{3} \ - \ \frac{x^3}{45} \ - \ \frac{2x^5}{945} \ - \ \cdots \ - \ \frac{2^{2n}B_n x^{2n-1}}{(2n)!} \ - \ \cdots$ $0 < \left \vert x \right \vert < \pi \qquad$
$\frac{1}{\cos x} \ = \ 1 \ + \ \frac {x^2}{2} \ + \ \frac{x^4}{24} \ + \ \frac{61x^6}{720} \ + \ \cdots \ - \ \frac{E_n x^{2n}}{(2n)!} \ + \ \cdots$ $\left \vert x \right \vert < \frac {\pi}{2} \qquad$
$\frac{1}{\sin x} \ = \ \frac{1}{x} \ + \ \frac {x}{6} \ + \ \frac{7x^3}{360} \ + \ \frac{31x^5}{15120} \ + \ \cdots \ + \ \frac{2(2^{2n-1}-1)B_n x^{2n-1}}{(2n)!} \ + \ \cdots$ $0 < \left \vert x \right \vert < \pi \qquad$
$\arcsin x = x + {1 \over 2}{x^3 \over 3} + \frac{1 \cdot 3}{ 2 \cdot 4} {x^5 \over 5} + \frac {1 \cdot 3 \cdot 5}{ 2 \cdot 4 \cdot 6}{x^7 \over 7} + \cdots$ $\left \vert x \right \vert < 1 \qquad$
$\arccos x = {\pi \over 2} - \sin ^{-1} x = {\pi \over 2} - \left ( x + {1 \over 2}{x^3 \over 3} +\frac{1 \cdot 3}{2 \cdot 4} {x^5 \over 5} + \cdots \ \right )$ $\left \vert x \right \vert < 1 \qquad$
$\arctan x = \begin{cases} x - {x^3 \over 3} + {x^5 \over 5} - { x^7 \over 7} + \cdots, & \left \vert x \right \vert < 1 \\ {\pi \over 2} - {1 \over x} + {1 \over 3x^3} - {1 \over 5x^5} + \cdots, &\mbox{ if } x \geqq 1 \\ -{\pi \over 2} - {1 \over x} + {1 \over 3x^3} - {1 \over 5x^5} + \cdots, &\mbox{ if } x \leqq -1 \end{cases}$
$\arccot x = {\pi \over 2} - \arctan x = \begin{cases} {\pi \over 2} - \left ( x - {x^3 \over 3} + {x^5 \over 5} - \cdots \right ), &\left \vert x \right \vert < 1 \\ {\pi} + {1 \over x} - {1 \over 3x^3} + {1 \over 5x^5} - \cdots, & \mbox{ if } x > 1\\ -{\pi} + {1 \over x} - {1 \over 3x^3} + {1 \over 5x^5} - \cdots, & \mbox{ if } x < -1 \end{cases}$
$\arccos ({1 \over x}) = {\pi \over 2} - \left ( {1 \over x} + \frac{1}{2 \cdot 3 x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 x^5} + \cdots \right )$ $\left \vert x \right \vert > 1 \qquad$
$\arcsin ({1 \over x}) = {1 \over x} + {1 \over 2 \cdot 3 x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 x^5} + \cdots$ $\left \vert x \right \vert > 1$
Series Expansion of Hyperbolic functions
$\, \sinh x = x + {x^3 \over 3!} + {x^5 \over 5!} + { x^7 \over 7!} + \cdots\,$ $- \infty < x < \infty \qquad$
$\, \cosh x = 1 + {x^2 \over 2!} + {x^4 \over 4!} + { x^6 \over 6!} + \cdots\,$ $- \infty < x < \infty \qquad$
$\, \tanh x = x - {x^3 \over 3} + {2x^5 \over 15} - { 17x^7 \over 315} + \cdots \ \frac{(-1)^{n-1}2^{2n}(2^{2n} -1)B_nx^{2n-1}}{(2n)!} + \cdots\,$ $\vert x \vert < {\pi \over 2} \qquad$
$\, \coth x = {1 \over x} + {x \over 3} - {x^3 \over 45} + { 2x^5 \over 945} + \cdots \frac{(-1)^{n-1}2^{2n}b_nx^{2n-1}}{(2n)!} + \cdots\,$ $0 < \vert x \vert < \pi \qquad$
$\frac {1}{\cosh x} = 1 - {x2 \over 2} + {5x^4 \over 24} -{61x^6 \over 720} + \cdots \frac{(-1)^nE_nx^{2n}}{(2n)!} + \cdots$ $\vert x \vert < {\pi \over 2}$
$\frac{1}{\sinh x} = {1 \over x} - {x \over 6} + {7x^3 \over 360} - {31x^5 \over 15,120} + \cdots \frac{(-1)^n2(2^{2n-1}-1)B_nx^{2n-1}}{(2n)!} + \cdots$ $0 < \vert x \vert < \pi$
$\operatorname{arsinh}\,x = \begin{cases} x - {x^3 \over 2 \cdot 3} + {1 \cdot 3 x^5 \cdot 2 \cdot 4 \cdot 5} - {1 \cdot 3 \cdot 5 x^7 \over 2 \cdot 4 \cdot 6 \cdot 7} + \cdots, & \left \vert x \right \vert < 1 \\ \left ( \ln \vert 2x \vert + {1 \over 2 \cdot 2 x^2} - {1 \cdot 3 \over 2 \cdot 4 \cdot 4x^4} + {1 \cdot 3 \cdot 5 \over 2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right ), & x \geqq 1\\ -\left ( \ln \vert 2x \vert + {1 \over 2 \cdot 2 x^2} - {1 \cdot 3 \over 2 \cdot 4 \cdot 4x^4} + {1 \cdot 3 \cdot 5 \over 2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right ), & x \leqq -1 \end{cases}$
$\operatorname{arcosh} \,x = \begin{cases} \{ \ln (2x) - ( \frac{1}{2 \cdot 2x^2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac { 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} + \cdots ) \}, & \operatorname{arsinh}\,x > 0, x \geqq 1 \\ - \{ \ln (2x) - ( \frac{1}{2 \cdot 2x^2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac { 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} + \cdots ) \}, & \operatorname{arsinh} \,x < 0, x \geqq 1 \end{cases}$
$\operatorname{argth} \,x = x + { x^3 \over 5} + {x^5 \over 5 } + {x^7 \over 7 }+ \cdots$ $\vert x \vert < 1 \qquad$
$\operatorname{argcoth} \,x = {1 \over x} + { 1 \over 3x^3} + {1 \over 5x^5 } + {1 \over 7x^7 }+ \cdots$ $\vert x \vert > 1 \qquad$
Various Series
$\, e^{\sin x} = 1 + x + {x^2 \over 2} - {x^4 \over 8} - {x^5 \over 15} + \cdots\,$ $- \infty < x < \infty$
$\, e^{\cos x} = e \left ( 1 - {x^2 \over 2} + {x^4 \over 6} - {31x^6 \over 720} + \cdots \right ) \,$ $- \infty < x < \infty$
$\, e^{\tan x} = 1 + x + {x^2 \over 2} + {x^3 \over 2} + {3x^4 \over 8} + \cdots \,$ $\vert x \vert < { \pi \over 2}$
$e^x \sin x = x + x^2 + {2x^3 \over 3 } - {x^5 \over 30} - {x^6 \over 90} + \cdots + \frac{2^{n/2} \sin (n \pi /4)\ x^n}{n!} + \cdots$ $- \infty < x < \infty$
$e^x \cos x = 1 + x - {x^3 \over 3 } - {x^4 \over 6} + \cdots + \frac{2^{n/2} \cos (n \pi /4)\ x^n}{n!} + \cdots$ $- \infty < x < \infty$
$\ln \vert \sin x \vert = \ln \vert x \vert - {x^2 \over 6} - {x^4 \over 180} - {x^6 \over 2835} - \cdots - \frac{2^{2n-1}B_nx^{2n}}{n(2n)!} + \cdots$ $0 < \vert x \vert < \pi$
$\ln \vert \cos x \vert = - {x^2 \over 2} - {x^4 \over 12} - {x^6 \over 45} - {17x^8 \over 2520} - \cdots - \frac{2^{2n-1}(2^{2n}-1)B_nx^{2n}}{n(2n)!} + \cdots$ $\vert x \vert < {\pi \over 2}$
$\ln \vert \tan x \vert = \ln \vert x \vert + {x^2 \over 3} + {7x^4 \over 90} + {62x^6 \over 2835}+ \cdots + \frac{2^{2n}(2^{2n-1}-1)B_nx^{2n}}{n(2n)!} + \cdots$ $0 < \vert x \vert < {\pi \over 2}$
$\frac{\ln (1+x)}{1+x} = x - (1+ {1 \over 2})^{x^2} + (1 + {1 \over 2} + {1 \over 3})^{x^3} - \cdots$ $\vert x \vert < 1$
Series of Reciprocal Power Series
$\text{if }\ y = c_1x +c_2x^3 +c_3x^3 + c_4x^4 + c_5x^5 + c_6x^6 + \cdots\,\qquad \text{then }\ x = C_1y+C_2y^2+C_3y^3+C_4y^4+C_5y^5+C_6y^6+\cdots$
$\text{where }\ c_1C_1 = 1, \qquad c_1^3C_2= -c_2, \qquad c_1^7C_3 = 2c_2^2 - c_1c_3$
$c_1^7C_4 = 5c_1c_2c_3 - 5c_2^3 - c_2^2c_4, \qquad c_1^9C_5 = 6c_1^2c_2c_4 +$
$c_1^{11}C_6 = 7 c_1^3c_2 c_5 + 84 c_1 c_2^3c_3 + 7c_1^3c_3c_4 - 28c_1^2c_2c_3^2 - c_1^4c/-6 - 28c_1^2c_2^2c_4 - 42c_2^5$
Taylor Series of Two Variables function
$\, f(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) +$
${1 \over 2!} \left \{ (x-a)^2f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b)+(y-b)^2f_{yy}(a,b) \right \} + \cdots\,$
$f_x(a,b),f_y(a,b) , \cdots \text {denote the partial derivatives with respect to } x ,\ y \cdots$

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva