Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:homework]]
 +
[[Category:problem solving]]
  
 
== Instructions ==
 
== Instructions ==
Line 4: Line 9:
  
 
== Problem 1 ==
 
== Problem 1 ==
 +
(a) Prove that <math>1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x}</math> for <math>x\neq1</math> and integer <math>n\geq1</math>.
 +
 +
(b) What is <math>1 + 2x + 3x^2 + \ldots +nx^{n-1}</math>?
 +
 
[[HW1.1 Landis Huffman_ECE302Fall2008sanghavi]]
 
[[HW1.1 Landis Huffman_ECE302Fall2008sanghavi]]
  
Line 11: Line 20:
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 12:53, 22 November 2011


Instructions

Homework 1 can be downloaded here on the ECE 302 course website

Problem 1

(a) Prove that $ 1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x} $ for $ x\neq1 $ and integer $ n\geq1 $.

(b) What is $ 1 + 2x + 3x^2 + \ldots +nx^{n-1} $?

HW1.1 Landis Huffman_ECE302Fall2008sanghavi

Problem 2

Problem 3

Problem 4


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch