Line 1: | Line 1: | ||

+ | [[Category:ECE302Fall2008_ProfSanghavi]] | ||

+ | [[Category:probabilities]] | ||

+ | [[Category:ECE302]] | ||

+ | [[Category:homework]] | ||

+ | [[Category:problem solving]] | ||

== Instructions == | == Instructions == | ||

Line 4: | Line 9: | ||

== Problem 1 == | == Problem 1 == | ||

+ | (a) Prove that <math>1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x}</math> for <math>x\neq1</math> and integer <math>n\geq1</math>. | ||

+ | |||

+ | (b) What is <math>1 + 2x + 3x^2 + \ldots +nx^{n-1}</math>? | ||

+ | |||

[[HW1.1 Landis Huffman_ECE302Fall2008sanghavi]] | [[HW1.1 Landis Huffman_ECE302Fall2008sanghavi]] | ||

Line 11: | Line 20: | ||

== Problem 4 == | == Problem 4 == | ||

+ | ---- | ||

+ | [[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]] |

## Latest revision as of 12:53, 22 November 2011

## Instructions

Homework 1 can be downloaded here on the ECE 302 course website

## Problem 1

(a) Prove that $ 1 + x + x^2 + \ldots + x^{n-1} = \frac{1-x^n}{1-x} $ for $ x\neq1 $ and integer $ n\geq1 $.

(b) What is $ 1 + 2x + 3x^2 + \ldots +nx^{n-1} $?

HW1.1 Landis Huffman_ECE302Fall2008sanghavi