(One intermediate revision by the same user not shown)
Line 1: Line 1:
[[Category:2013 Fall ECE 438 Boutin]][[Category:2013 Fall ECE 438 Boutin]][[Category:2013 Fall ECE 438 Boutin]][[Category:2013 Fall ECE 438 Boutin]]
+
[[Category:ECE438Fall2013Boutin]]
 +
[[Category:ECE438]]
 +
[[Category:ECE]]
 +
[[Category:fourier transform]]
 +
[[Category:homework]]
 +
[[Category:solution]]
 +
[[Category:Formulas]]
 +
 
 +
=[[HW1ECE38F13|HW1]] Solution ECE438 Fall 2013=
 +
In this homework, you were asked to start from a [[CT_Fourier_Transform_%28frequency_in_radians_per_time_unit%29|table of CT Fourier transforms]] in terms of <math>\omega</math> in radians and to obtain the corresponding relationships in terms of frequency f (in hertz). Below are the solutions.
  
=HW1_Solution_ECE438F13=
+
To get the justification for each transform/property, click on the corresponding link.
  
  
Line 12: Line 21:
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse  
 
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Definition CT Fourier Transform and its Inverse  
 
|-
 
|-
| align="right" style="padding-right: 1em;" |  [[Explain_CTFT|CT Fourier Transform]]
+
| align="right" style="padding-right: 1em;" |  [[Explain_CTFT|Justification]] CT Fourier Transform
 
| <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
 
| <math>X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[Explain_InverseCTFT|Inverse CT Fourier Transform]]
+
| align="right" style="padding-right: 1em;" | [[Explain_InverseCTFT|Justification ]]  Inverse CT Fourier Transform
 
| <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 
| <math>\, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \,</math>
 
|}
 
|}
Line 28: Line 37:
 
| <math> X(f) </math>
 
| <math> X(f) </math>
 
|-
 
|-
| align="right" style="padding-right: 1em;" | [[Explain_unitimpulse|CTFT of a unit impulse]]
+
| align="right" style="padding-right: 1em;" | [[Explain_unitimpulse|Justification]] CTFT of a unit impulse
 
| <math>\delta (t)\ </math>  
 
| <math>\delta (t)\ </math>  
 
|  
 
|  
Line 125: Line 134:
 
| <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math>
 
| <math>\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df</math>
 
|}
 
|}
 
 
----
 
----
 
+
[[MegaCollectiveTableTrial1|Back to Collective Table]]
[[MegaCollectiveTableTrial1|Back to Collective Table]] | [[2010_Fall_ECE_438_Boutin|Back to 438 main page]]
+
 
+
[[Category:Formulas]]
+
 
+
 
+
 
+
  
 
[[ 2013 Fall ECE 438 Boutin|Back to 2013 Fall ECE 438 Boutin]]
 
[[ 2013 Fall ECE 438 Boutin|Back to 2013 Fall ECE 438 Boutin]]

Latest revision as of 05:49, 9 September 2013


HW1 Solution ECE438 Fall 2013

In this homework, you were asked to start from a table of CT Fourier transforms in terms of $ \omega $ in radians and to obtain the corresponding relationships in terms of frequency f (in hertz). Below are the solutions.

To get the justification for each transform/property, click on the corresponding link.


CT Fourier Transform Pairs and Properties (frequency f in hertz per time unit) (info)
(Click title to see explanation on how to obtain the formula in terms of f in hertz)
Definition CT Fourier Transform and its Inverse
Justification CT Fourier Transform $ X(f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
Justification Inverse CT Fourier Transform $ \, x(t)=\mathcal{F}^{-1}(X(f))=\int_{-\infty}^{\infty}X(f)e^{i2\pi ft} df \, $
CT Fourier Transform Pairs
x(t) $ \longrightarrow $ $ X(f) $
Justification CTFT of a unit impulse $ \delta (t)\ $ $ 1 \! \ $
CTFT of a shifted unit impulse $ \delta (t-t_0)\ $ $ e^{-i2\pi ft_0} $
CTFT of a complex exponential $ e^{iw_0t} $ $ \delta (f - \frac{\omega_0}{2\pi}) \ $
$ e^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \frac{1}{a+i2\pi f} $
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ $ \left( \frac{1}{a+i2\pi f}\right)^2 $
CTFT of a cosine $ \cos(\omega_0 t) \ $ $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $
CTFT of a sine $ sin(\omega_0 t) \ $ $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $
CTFT of a rect $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $
CTFT of a sinc $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $
CTFT of a periodic function $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $
CTFT of an impulse train $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $
CT Fourier Transform Properties
x(t) $ \longrightarrow $ $ X(f) $
multiplication property $ x(t)y(t) \ $ $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $
convolution property $ x(t)*y(t) \! $ $ X(f)Y(f) \! $
time reversal $ \ x(-t) $ $ \ X(-f) $
Other CT Fourier Transform Properties
Parseval's relation $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $

Back to Collective Table

Back to 2013 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang