How to obtain the CTFT of a impulse train in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ x(t)=\sum^{\infty}_{n=-\infty} \delta(t-nT) $

$ \mathcal{X}(\omega)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(w-\frac{2\pi k}{T}) $

To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f) \\ &=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T}) \\ &=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \end{align} $

$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $


Back to Table

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn