Line 1: Line 1:
 +
=[[HW1_MA453Fall2008walther|HW1]], Chapter 0, Problem 14, [[MA453]], Fall 2008, [[user:walther|Prof. Walther]]=
 +
==Problem Statement==
 +
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 +
 +
----
 +
==Discussion==
 +
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Show that <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
  
Line 12: Line 19:
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
After constant long division we get to the base equation where there is still a remainder of 1.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
Therefore <math> 5*n + 3 </math> and <math> 7*n + 4 </math> are relatively prime.
 
 
  
 
== Even easier would be to use the Euclidean Algorithm ==
 
== Even easier would be to use the Euclidean Algorithm ==
Line 24: Line 29:
  
 
Since the GCD of the two expressions is one for all n, they are relatively prime.
 
Since the GCD of the two expressions is one for all n, they are relatively prime.
 +
----
 +
[[HW1_MA453Fall2008walther|Back to HW1]]
 +
 +
[[Main_Page_MA453Fall2008walther|Back to MA453 Fall 2008 Prof. Walther]]

Latest revision as of 16:49, 22 October 2010

HW1, Chapter 0, Problem 14, MA453, Fall 2008, Prof. Walther

Problem Statement

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.


Discussion

Show that $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

$ 7*n + 4 = 5*n + 3 + 2*n + 1 $

$ 5*n + 3 = 2*(2*n + 1) + n + 1 $

$ 2*n + 1 = 1*(n + 1) + n $

$ n + 1 = 1*n + 1 $


After constant long division we get to the base equation where there is still a remainder of 1. Therefore $ 5*n + 3 $ and $ 7*n + 4 $ are relatively prime.

Even easier would be to use the Euclidean Algorithm

$ gcd(5*n + 3, 7*n + 4) = gcd(5*n + 3, 2*n + 1) $ $ = gcd(3*n + 2, 2*n + 1) $ $ = gcd(n + 1, 2*n + 1) $ $ = gcd(n + 1, n) $ $ = gcd(1, n) $ $ = 1 $

Since the GCD of the two expressions is one for all n, they are relatively prime.


Back to HW1

Back to MA453 Fall 2008 Prof. Walther

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal