Revision as of 10:21, 14 October 2009 by Mboutin (Talk | contribs)


ECE 438 Fall_2009 Prof. Boutin: graph of the magnitude of the DFT of a windowed filter

Consider the ideal low-pass filter

$ H(\omega)=\left\{ \begin{array}{ll}1, & \text{ when } |\omega|< \omega_c\\ 0, & \text{ when } \omega_c< |\omega|< \pi \end{array}\right., $

which corresponds to the DT signal

$ h[n]=\left\{ \begin{array}{ll} \frac{\omega_c}{\pi}, & \text{ if }n=0,\\ \frac{\sin (\omega_c n)}{\pi n}, & else. \end{array} \right. $ First we shift $ h[n] $ by $ \frac{M-1}{2} $ units.

$ \bar{h}[n]=h[n-\frac{M-1}{2]} $


Belowis an approximation of the graph of the magniture of $ H_{FIR}(\omega)=W(\omega)*\bar{H}(\omega) $ for $ M=1,000 $ and $ \omega_c=\frac{\pi}{2} $.

HFIR.png

This is the graph of the magniture of $ W(\omega) $ for $ N=100 $.

DFT hFIR.png

This is the graph of the magniture of $ W(\omega) $ for $ N=10000 $.

DFT hFIRzoom.png


Back to ECE438 (BoutinFall2009)

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin