Line 51: Line 51:
 
[[Image:CR_fig1_mh.jpeg|800px|thumb|left|Fig 1: bottom left: ccw rotation of vector; top right: cw rotation of coordinate axes]]  
 
[[Image:CR_fig1_mh.jpeg|800px|thumb|left|Fig 1: bottom left: ccw rotation of vector; top right: cw rotation of coordinate axes]]  
  
Vector
+
Let <math>{P_0}</math> be the unit vector shown in the top left corner of figure 1. <br/>
 +
<math>P_0 = \begin{bmatrix}
 +
1 \\
 +
0
 +
\end{bmatrix}</math>
 +
 
 +
Rotating <math>P_0</math> <math>90</math>° counterclockwise produces the unit vector <math>P_1</math> shown in the bottom left<br/>
 +
<math>P_1 = \begin{bmatrix}
 +
0 \\
 +
1
 +
\end{bmatrix}</math>
 +
 
 +
The result of rotating the coordinate axes clockwise by <math>90</math>° is shown in the top right. We have that  <br/>
 +
<math>P_2 = \begin{bmatrix}
 +
0 \\
 +
1
 +
\end{bmatrix}</math>
 +
 
 +
So we see that vectors <math>P_1</math> and <math>P_2</math> are equivalent. In other words, rotating a vector counterclockwise by angle <math>\theta</math> is the same as rotating the coordinate axes clockwise by angle <math>\theta</math>.
 +
 
  
 
Let us define a new coordinate system <math>(r,z)</math> where<br/>
 
Let us define a new coordinate system <math>(r,z)</math> where<br/>

Revision as of 08:48, 22 May 2013

sLecture

Topic 2: Tomographic Reconstruction
Intro
CT
PET
Co-ordinate Rotation


The Bouman Lectures on Image Processing

A sLecture by Maliha Hossain

Subtopic 3: Co-ordinate Rotation

© 2013




Excerpt from Prof. Bouman's Lecture


Accompanying Lecture Notes


Motivation: Before introducing FST some background

$ A_{\theta} $ is the counterclockwise rotation matrix given by
$ A_{\theta}=\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} $

The matrix rotates vector $ v_0 $ in a 2-dimensional real space by angle $ \theta $ in a fixed coordinate system. Notice that this is equivalent to keeping the vector fixed and rotating the coordinate system clockwise by $ \theta $. This equivalence is illustrated in figure 1.


Fig 1: bottom left: ccw rotation of vector; top right: cw rotation of coordinate axes

Let $ {P_0} $ be the unit vector shown in the top left corner of figure 1.
$ P_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} $

Rotating $ P_0 $ $ 90 $° counterclockwise produces the unit vector $ P_1 $ shown in the bottom left
$ P_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $

The result of rotating the coordinate axes clockwise by $ 90 $° is shown in the top right. We have that
$ P_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} $

So we see that vectors $ P_1 $ and $ P_2 $ are equivalent. In other words, rotating a vector counterclockwise by angle $ \theta $ is the same as rotating the coordinate axes clockwise by angle $ \theta $.


Let us define a new coordinate system $ (r,z) $ where
$ \begin{bmatrix} x \\ y \end{bmatrix} = A_{\theta}\begin{bmatrix} r \\ z \end{bmatrix} $

i.e. vector $ [r,z]' $ is rotated counterclockwise angle $ \theta $ to produce vector $ [x,y]' $

Figure 1 shows the geometric interpretation of the rotation.

Fig 1: Geometric Interpretation


  • Inverse Transformation

$ \begin{bmatrix} r \\ z \end{bmatrix} = A_{-\theta}\begin{bmatrix} x \\ y \end{bmatrix} $


References

  • C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to the "Bouman Lectures on Image Processing" by Maliha Hossain

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva