Line 38: Line 38:
 
----
 
----
  
* Define the counter-clockwise rotation matrix
+
Motivation: Before introducing FST some background
  
the matrix rotates vector <math>v_0</math> in a 2-D real space by angle <math>\theta</math> in a fixed coordinate system.
+
<math>A_{\theta}</math> is the counterclockwise rotation matrix given by <br/>
 
+
<math>A_{\theta}=\begin{bmatrix}
<math>\begin{bmatrix}
+
 
\cos(\theta) & -\sin(\theta) \\
 
\cos(\theta) & -\sin(\theta) \\
 
\sin(\theta) & \cos(\theta)
 
\sin(\theta) & \cos(\theta)
\end{bmatrix}</math>
+
\end{bmatrix}</math><br/>
 +
 
 +
The matrix rotates vector <math>v_0</math> in a 2-dimensional real space by angle <math>\theta</math> in a fixed coordinate system. Notice that this is equivalent to keeping the vector fixed and rotating the coordinate system ''clockwise'' by <math>\theta</math>. This equivalence is illustrated in figure 1.
 +
 
 +
 
 +
[[Image:CR_fig1_mh.jpeg|800px|thumb|left|Fig 1: bottom left: ccw rotation of vector; top right: cw rotation of coordinate axes]]
 +
 
 +
Vector
  
* Define the new coordinate system <math>(r,z)</math>
+
Let us define a new coordinate system <math>(r,z)</math> where<br/>
 
<math>\begin{bmatrix}
 
<math>\begin{bmatrix}
 
x \\
 
x \\
Line 57: Line 63:
 
</math>
 
</math>
  
 +
i.e. vector <math>[r,z]'</math> is rotated counterclockwise angle <math>\theta</math> to produce vector <math>[x,y]'</math>
  
 +
Figure 1 shows the geometric interpretation of the rotation.
  
[[Image:CR_fig1.png|400px|thumb|left|Fig 1: Geometric Interpretation]]
+
[[Image:CR_fig1.png|600px|thumb|left|Fig 1: Geometric Interpretation]]
  
  

Revision as of 05:48, 22 May 2013

sLecture

Topic 2: Tomographic Reconstruction
Intro
CT
PET
Co-ordinate Rotation


The Bouman Lectures on Image Processing

A sLecture by Maliha Hossain

Subtopic 3: Co-ordinate Rotation

© 2013




Excerpt from Prof. Bouman's Lecture


Accompanying Lecture Notes


Motivation: Before introducing FST some background

$ A_{\theta} $ is the counterclockwise rotation matrix given by
$ A_{\theta}=\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} $

The matrix rotates vector $ v_0 $ in a 2-dimensional real space by angle $ \theta $ in a fixed coordinate system. Notice that this is equivalent to keeping the vector fixed and rotating the coordinate system clockwise by $ \theta $. This equivalence is illustrated in figure 1.


Fig 1: bottom left: ccw rotation of vector; top right: cw rotation of coordinate axes

Vector

Let us define a new coordinate system $ (r,z) $ where
$ \begin{bmatrix} x \\ y \end{bmatrix} = A_{\theta}\begin{bmatrix} r \\ z \end{bmatrix} $

i.e. vector $ [r,z]' $ is rotated counterclockwise angle $ \theta $ to produce vector $ [x,y]' $

Figure 1 shows the geometric interpretation of the rotation.

Fig 1: Geometric Interpretation


  • Inverse Transformation

$ \begin{bmatrix} r \\ z \end{bmatrix} = A_{-\theta}\begin{bmatrix} x \\ y \end{bmatrix} $


References

  • C. A. Bouman. ECE 637. Class Lecture. Digital Image Processing I. Faculty of Electrical Engineering, Purdue University. Spring 2013.



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to the "Bouman Lectures on Image Processing" by Maliha Hossain

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett