(New page: Example from class on 11/7/08 X is a bernoulli RV with Pr[x=1]=p (unknown) N samples xi...xn <math> p_{ML} = \frac{\sum_i xi}{n} </math> <math> E[p_{ML}]=p </math> <math> Var(p_{ML})=...)
 
 
Line 1: Line 1:
 +
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:problem solving]]
 +
 
Example from class on 11/7/08
 
Example from class on 11/7/08
  
Line 32: Line 38:
  
 
<math>Pr[|p_{ML}-p|<=\epsilon]>=1 - \frac{1}{4n\epsilon^2}</math>
 
<math>Pr[|p_{ML}-p|<=\epsilon]>=1 - \frac{1}{4n\epsilon^2}</math>
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 13:39, 22 November 2011


Example from class on 11/7/08

X is a bernoulli RV with Pr[x=1]=p (unknown)

N samples xi...xn

$ p_{ML} = \frac{\sum_i xi}{n} $

$ E[p_{ML}]=p $

$ Var(p_{ML})=\frac{Var(X)}{n}=\frac{p(1-p)}{n} $

$ Pr[|p_{ML}-p|<=\epsilon] = Pr[|p_{ML}-E[p_{ML}]|<=\epsilon] = 1- Pr[|p_{ML}-E[p_{ML}]|>\epsilon] $


now,

$ Pr[|p_{ML}-E[p_{ML}]|>\epsilon]<=\frac{Var(p_{ML})}{\epsilon^2} $ CHEBYSHEV INEQUALITY

So

$ Pr[|p_{ML}-p|<=\epsilon]>= 1 - \frac{Var(p_{ML})}{\epsilon^2} = \frac{1-p(1-p)}{n\epsilon^2} >= 1 - \frac{1}{4n\epsilon^2} $

So now,

$ p(1-p)<=\frac{1}{4} $

And finally,


$ Pr[|p_{ML}-p|<=\epsilon]>=1 - \frac{1}{4n\epsilon^2} $


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett