Line 1: Line 1:
 
= Question about computing the inverse z-transform=
 
= Question about computing the inverse z-transform=
 
I'm not sure if I've done this correctly in the first place. I would like your input before I actually attempt to inverse it. 0
 
'''I tried the LaTeX but it failed miserably. ''' . Maybe it would be easier if you write it out while you are reading my LaTeX fail trying to help me, otherwise I can come in and see you on Monday.
 
:I fixed it. Now it works. For future references, [http://meta.wikimedia.org/wiki/Help:Displaying_a_formula here] is a good page to bookmark: it explains how to use latex in mediawiki, and gives many examples that you can cut and paste. -pm
 
 
----
 
----
== Computation of inverse z-transform by a student (with question about how to obtain ROC)=
+
== Computation of inverse z-transform by a student (with question about how to obtain ROC)==
 
Take <math>x[n] = a^n(u[n-2]+u[n]) </math>. We then have
 
Take <math>x[n] = a^n(u[n-2]+u[n]) </math>. We then have
 
<math>
 
<math>
Line 44: Line 40:
 
----
 
----
  
Anybody sees anything else? Do you have more questions? Comments?
+
Anybody sees anything else? Do you have more questions? Comments? Please feel free to add below.
  
 
----
 
----
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438, Fall 2010, Prof. Boutin]]
 
[[2010_Fall_ECE_438_Boutin|Back to ECE438, Fall 2010, Prof. Boutin]]

Revision as of 13:03, 12 September 2010

Question about computing the inverse z-transform


Computation of inverse z-transform by a student (with question about how to obtain ROC)

Take $ x[n] = a^n(u[n-2]+u[n]) $. We then have $ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)},\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). \\ \text{Now let }k=-n, \\ \Rightarrow X(z) &= \sum_{k=-2}^\infty (a/z)^n + \sum_{k=0}^\infty (a/z)^n ,\\ &=\sum_{k=0}^\infty \left( (a/z)^n + 2)\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+2\right) + \left(\frac{1}{1-a/z}\right), \\ & = \frac{z}{z-a}+2 + \frac{z}{z-a}, \\ & = \frac{z}{z-a}+2\frac{z-a}{z-a} + \frac{z}{z-a} , \\ & = \frac{4z-2a}{z-a}, \\ & = \frac{4-2a/z}{1-a/z}, \text{ for } |z|<a ??? \end{align} $

So if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?

~ksoong

Comments/corrections from Prof. Mimi

Take $ x[n] = a^n(u[n-2]+u[n]) $. We then have $ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)}, {\color{OliveGreen}\surd}\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, {\color{OliveGreen}\surd} \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). {\color{OliveGreen}\surd} \\ \text{Now let }k=-n,& {\color{red}\text{This change of variable is not useful, unfortunately.}} \\ \Rightarrow X(z) &= \sum_{k=-2}^{\color{red}-\infty} (a/z)^{\color{red}n} + \sum_{k=0}^\infty (a/z)^{\color{red}n} ,{\color{red}\text{The terms inside the summation contain n, but the summation is over k.}} \\ &=\sum_{k=0}^{\color{red}-\infty} \left( (a/z)^n {\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+{\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \left(\frac{1}{1-a/z}\right), {\color{red}\text{For this last step, you need to assume } \left| \frac{a}{z}\right|<1, \text{ else both sums diverge.}} \end{align} $

The answer to your initial question ("if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?") is in the last step. As you can see from this step, X(z) only converges if |a|<|z|. Note that, since a could be a complex number, it is important not to say a< |z |


Anybody sees anything else? Do you have more questions? Comments? Please feel free to add below.


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang