(Computation of inverse z-transform by a student (with question about how to obtain ROC))
Line 1: Line 1:
 
= Question about computing the inverse z-transform=
 
= Question about computing the inverse z-transform=
 
----
 
----
== Computation of inverse z-transform by a student (with question about how to obtain ROC)==
+
== Computation of a z-transform by a student prior to inverse z-transforming (with question about how to obtain ROC)==
 
Take <math>x[n] = a^n\left( u[n-2]+u[n]\right) </math>. We then have
 
Take <math>x[n] = a^n\left( u[n-2]+u[n]\right) </math>. We then have
  
Line 23: Line 23:
 
:~ksoong
 
:~ksoong
 
----
 
----
 +
 
==Comments/corrections from [[user:mboutin|Prof. Mimi]]==
 
==Comments/corrections from [[user:mboutin|Prof. Mimi]]==
 
Take <math>x[n] = a^n(u[n-2]+u[n]) </math>. We then have
 
Take <math>x[n] = a^n(u[n-2]+u[n]) </math>. We then have

Revision as of 16:01, 13 September 2010

Question about computing the inverse z-transform


Computation of a z-transform by a student prior to inverse z-transforming (with question about how to obtain ROC)

Take $ x[n] = a^n\left( u[n-2]+u[n]\right) $. We then have

$ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)},\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). \\ \text{Now let }k=-n, \\ \Rightarrow X(z) &= \sum_{k=-2}^\infty (a/z)^n + \sum_{k=0}^\infty (a/z)^n ,\\ &=\sum_{k=0}^\infty \left( (a/z)^n + 2)\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+2\right) + \left(\frac{1}{1-a/z}\right), \\ & = \frac{z}{z-a}+2 + \frac{z}{z-a}, \\ & = \frac{z}{z-a}+2\frac{z-a}{z-a} + \frac{z}{z-a} , \\ & = \frac{4z-2a}{z-a}, \\ & = \frac{4-2a/z}{1-a/z}, \text{ for } |z|<a ??? \end{align} $

So if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?

~ksoong

Comments/corrections from Prof. Mimi

Take $ x[n] = a^n(u[n-2]+u[n]) $. We then have $ \begin{align} X(z) &= \sum_{n=-\infty}^\infty x[n]z^{-n} \text{ (by definition of the z-transform)}, {\color{OliveGreen}\surd}\\ &= \sum_{n=-\infty}^\infty a^n(u[n-2]+u[n])z^{-n}, {\color{OliveGreen}\surd} \\ &= \sum_{n=2}^\infty a^n(z^{-n}) + \sum_{n=0}^\infty a^n(z^{-n}). {\color{OliveGreen}\surd} \\ \text{Now let }k=-n,& {\color{red}\text{This change of variable is not useful, unfortunately.}} \\ \Rightarrow X(z) &= \sum_{k=-2}^{\color{red}-\infty} (a/z)^{\color{red}n} + \sum_{k=0}^\infty (a/z)^{\color{red}n} ,{\color{red}\text{The terms inside the summation contain n, but the summation is over k.}} \\ &=\sum_{k=0}^{\color{red}-\infty} \left( (a/z)^n {\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \sum_{k=0}^\infty \left( \frac{a}{z}\right)^n \\ & = \left(\frac{1}{1-a/z}+{\color{red} -(a/z)^{-2}-(a/z)^{-1}} )\right) + \left(\frac{1}{1-a/z}\right), {\color{red}\text{For this last step, you need to assume } \left| \frac{a}{z}\right|<1, \text{ else both sums diverge.}} \end{align} $

The answer to your initial question ("if I end up with something that says 1/1-(1/z), I am confused. does it converge when |z|>a or when |z|<a?") is in the last step. As you can see from this step, X(z) only converges if |a|<|z|. Note that, since a could be a complex number, it is important not to say a< |z|


A good way to check your answer is to use the Z-transform table. You can use the time shift property on the first term (a^n *u[n-2]) and the second term (a^n *u[n]) can be directly converted using the table. Your final answer should match up with what you ended with above. -Sbiddand


Anybody sees anything else? Do you have more questions? Comments? Please feel free to add below.


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett