Line 18: Line 18:
 
|  Please continue
 
|  Please continue
 
| write a rule here
 
| write a rule here
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Leibnitz Rule for Successive Derivatives of a Product
 +
|-
 +
| first order
 +
| <math>\frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} </math>
 +
|-
 +
| second order
 +
|  <math>\frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+  v \frac{d^2u }{dx^2} </math>
 +
|-
 +
| third order
 +
| <math>\frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+  v \frac{d^3u }{dx^3} </math>
 +
|-
 +
| n-th order
 +
|  <math>\frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} +  </math>
 
|}
 
|}
 
{|
 
{|
Line 43: Line 57:
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
|-
 
|-
| exponential
+
| hyperbolic sine
| <span class="texhtml">''e''<sup>''u''</sup></span>  
+
| <math>\text{sh } u</math>
| <math>e^u \frac{du}{dx}</math>
+
| <math>\text{ch } u \frac{du}{dx}</math>
 
|-
 
|-
 
|   
 
|   

Revision as of 08:22, 26 October 2010

Table of Derivatives

Laplace Transform Pairs and Properties
General Rules
Derivative of a constant $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $
Linearity $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $
Please continue write a rule here
Leibnitz Rule for Successive Derivatives of a Product
first order $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $
second order $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $
third order $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $
n-th order $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + $
Derivatives of trigonometric functions
sine sin u $ \cos u \frac{du}{dx} $
add function here derivative here
Derivatives of exponential and logarithm functions
exponential eu $ e^u \frac{du}{dx} $
add function here derivative here
Derivatives of hyperbolic functions
hyperbolic sine $ \text{sh } u $ $ \text{ch } u \frac{du}{dx} $
add function here derivative here


Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang