(Undo revision 43013 by Chen558 (Talk))
Line 1: Line 1:
[[ECE438 (BoutinFall2009)|Back to ECE438 course page]]  
+
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]
  
 
----
 
----
 +
== Spectral Analysis of 2D Signals (Nov.16) ==
  
== Continuous Space Fourier Transform of 2D Signals  ==
+
This recitation covers the material from Nov. 4 to Nov. 13.  So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform.
 
+
In 1D, we have:
{|
+
*<math>X(f) = \int_{-\infty}^{\infty}{x(t)e^{-j2\pi ft} dt } </math>
|-
+
*<math>x(t) = \int_{-\infty}^{\infty}{X(2\pi f)e^{j2\pi ft} df } </math>
! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Continuous Space Fourier Transform (2D Fourier Transform)
+
Similarily, in2D, we have:
|-
+
*Forward transform- <math>F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy }</math>                    
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | 1D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
+
*Inverse transform- <math>f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>                      
|-
+
Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.
| align="right" style="padding-right: 1em;" | Continous Space Fourier Transform
+
*'''Linearity:'''<math>\displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) </math>
| <math>\mathcal{X}(f)=\int_{-\infty}^{\infty}x(t)e^{-j2\pi ft} dt </math>
+
*'''Scaling:<math>f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv)</math>'''
|-
+
*'''Shifting: <math>f(x-x_o,y-y_o)------------CSFT-------F(u,v)e^{-j2\pi(ux_o+vy_o)} </math>'''  
| align="right" style="padding-right: 1em;" | Inverse Continous Space Fourier Transform
+
*'''Modulation:<math>f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o)</math>'''
| <math>x(t)=\int_{-\infty}^{\infty}\mathcal{X}(2\pi f)e^{j2\pi ft} df </math>  
+
*'''Reciprocity:'''<math>\displaystyle F(x,y)-------------CSFT ------f(-u,-v)</math>  
|
+
*'''Parseval’s relation:<math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } </math>'''
|}
+
*'''Initial value: <math>F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } </math>'''
 
+
*'''If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.'''
{|
+
** <math>\displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)}</math>
|-
+
** <math>\displaystyle F(u,v)=F^{*}(-u,-v)</math>
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | 2D Continuous Space Fourier Transform(CSFT) definitions and its inverse transform
+
** <math> \displaystyle A(u,v)=A(-u,-v)</math>
|-
+
**<math>\displaystyle \theta(u,v)=-\theta(-u,-v) </math>
| align="right" style="padding-right: 1em;" | Forward transform  
+
** <math>f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv}</math>
| <math>\mathcal{F}(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy }</math>
+
Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,  
|-
+
**<math>g(x)-----CSFT-----------G(u)</math>  
| align="right" style="padding-right: 1em;" | Inverse transform  
+
**<math>h(y)---- CSFT-----------H(v)</math>  
| <math>f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } </math>  
+
**<math>f(x,y)-- CSFT------------F(u,v)</math>  
|
+
If a function can be rewritten as <math>\displaystyle f(x,y)=g(x)h(y)</math>; then, its fourier transform is <math>\displaystyle   F(u,v)=G(u)H(v) </math>.
|}
+
*For example, <math>\displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v)</math>
   
+
*Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot,     keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).
{|
+
Another special function is the circ function and the jinc function.
|-
+
*<math>\displaystyle circ(x,y)------------CSFT----------------jinc(u,v)</math>
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | 2D Continuous Space Fourier Transform(CSFT) Properties
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle x(t)</math>
+
| <math>\longrightarrow</math>
+
| <math> \mathcal{X}(f) </math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Linearity'''  
+
| <math>\displaystyle af_1(x,y)+bf_2(x,y) </math>
+
|
+
| <math>\displaystyle aF_1(u,v)+bF_2(u,v)</math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Scaling'''
+
| <math>f(\frac{x}{a},\frac{y}{b}) </math>
+
|
+
| <math>\displaystyle|ab|F(au,bv)</math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Shifting'''  
+
| <math>\displaystyle f(x-x_o,y-y_o) </math>
+
|
+
| <math>\displaystyle F(u,v)e^{-j2\pi(ux_o+vy_o)}</math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Modulation'''  
+
| <math>\displaystyle f(x,y)e^{j2\pi(xu_o+yv_o)} </math>
+
|
+
| <math>\displaystyle F(u-u_o,v-v_o)</math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Reciprocity'''  
+
| <math>\displaystyle F(x,y)</math>
+
|
+
| <math>\displaystyle f(-u,-v)</math>  
+
|
+
|}
+
 
+
{|
+
|-
+
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Other Properties
+
|-
+
| align="right" style="padding-right: 1em;" | '''Parseval’s relation'''
+
| <math>\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv }</math>
+
|-
+
| align="right" style="padding-right: 1em;" | '''Initial Value'''  
+
| <math>F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy }</math>  
+
|
+
|}
+
 
+
{|
+
|-
+
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Symmetry Properties for Continuous Space Fourier Transform
+
|-
+
| '''If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.'''
+
|-
+
| <math>\displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)}</math>
+
|-
+
|<math>\displaystyle F(u,v)=F^{*}(-u,-v)</math>
+
|-
+
|<math> \displaystyle A(u,v)=A(-u,-v)</math>
+
|-
+
|<math>\displaystyle \theta(u,v)=-\theta(-u,-v) </math>
+
|-
+
|<math>f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv}</math>
+
|
+
|}
+
 
+
{|
+
|-
+
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="2" | Separability
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle g(x)</math>
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle G(u) </math>
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle h(x)</math>
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle H(v) </math>
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle f(x,y)</math>
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle F(u,v) </math>
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle f(x,y)=g(x)h(y)</math>  
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle F(u,v)=G(u)H(v) </math>
+
|-
+
|*For example,  
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle rect(x,y)=rect(x)rect(y)</math>
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle sinc(u)sinc(v)=sinc(u,v) </math>
+
|
+
|}
+
*Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).
+
 
+
{|
+
|-
+
| align="right" style="padding-right: 1em;" |
+
| <math>\displaystyle circ(x,y)</math>
+
| <math>\longrightarrow</math>
+
| <math> \displaystyle jinc(u,v) </math>
+
|-
+
|}
+
 
*Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
 
*Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.
 
+
Other important transform pairs:
<br> Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,
+
*<math>\displaystyle \delta (x,y)---CSFT---1</math>
 
+
*<math>\displaystyle  1---CSFT--- \delta (u,v)</math>
 
+
*<math>\displaystyle  rect(x)---CSFT---sinc(u) \delta (v)</math>
Other important transform pairs:  
+
*<math>\displaystyle  \delta (x)--CSFT---\delta (v) </math>
 
+
*<math> e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o)</math>
*<math>\displaystyle \delta (x,y)---CSFT---1</math>  
+
*<math>\displaystyle  1---CSFT--- \delta (u,v)</math>  
+
*<math>\displaystyle  rect(x)---CSFT---sinc(u) \delta (v)</math>  
+
*<math>\displaystyle  \delta (x)--CSFT---\delta (v) </math>  
+
*<math> e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o)</math>  
+
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 
*<math> cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] </math>
 
+
In 2D, we can also change the coordianting system from rectangular to polar form,
In 2D, we can also change the coordianting system from rectangular to polar form,  
+
**'''<math>x=rcos(\theta)</math>----------------<math>u=\rho cos(\phi)</math>'''
 
+
**'''<math>y=rsin(\theta)</math>----------------<math>v=\rho sin(\phi)</math>'''
**'''<span class="texhtml">''x'' = ''r'''</span>'''''c''''o''''s''(θ)----------------<span class="texhtml">''u'' = ρ''c''''o''''s''(φ)</span>  
+
*Forward transform-<math>F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta }</math>
**'''<span class="texhtml">''y'' = ''r'''</span>'''''s''''i''''n''(θ)----------------<span class="texhtml">''v'' = ρ''s''''i''''n''(φ)</span>  
+
*Forward transform-<math>F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta }</math>  
+
 
*Inverse transform-<math>f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi }</math>
 
*Inverse transform-<math>f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi }</math>
 
+
Some properties related to the polar representations
Some properties related to the polar representations  
+
*Rotation <math>\displaystyle f(r,\theta +\alpha )-------CSFT-------F(\rho ,\phi + \alpha) </math>
 
+
*Circular Symmetry <math>\displaystyle f(r,\theta)=f_o(r)---------->F(\rho , \phi)=F_o(\rho)</math>
*Rotation <math>\displaystyle f(r,\theta +\alpha )-------CSFT-------F(\rho ,\phi + \alpha) </math>  
+
Convolution Theorem
*Circular Symmetry <math>\displaystyle f(r,\theta)=f_o(r)---------->F(\rho , \phi)=F_o(\rho)</math>
+
 
+
Convolution Theorem  
+
 
+
 
*<math>\displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) </math>
 
*<math>\displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) </math>
 
+
Product Theorem
Product Theorem  
+
 
+
 
*<math>\displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v)</math>
 
*<math>\displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v)</math>
  
[[ECE438 (BoutinFall2009)|Back to ECE438 course page]]
+
[[ECE438_(BoutinFall2009)|Back to ECE438 course page]]

Revision as of 15:13, 30 November 2010

Back to ECE438 course page


Spectral Analysis of 2D Signals (Nov.16)

This recitation covers the material from Nov. 4 to Nov. 13. So far, we have introduced the basic knowledge of 2D signals. As a review, let us start from the Continuous-Space Fourier Transform(CSFT) definitons and its inverse transform. In 1D, we have:

  • $ X(f) = \int_{-\infty}^{\infty}{x(t)e^{-j2\pi ft} dt } $
  • $ x(t) = \int_{-\infty}^{\infty}{X(2\pi f)e^{j2\pi ft} df } $

Similarily, in2D, we have:

  • Forward transform- $ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux+vy)} dxdy } $
  • Inverse transform- $ f(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{F(u,v)e^{j2\pi(ux+vy)} dudv } $

Like 1D signals, properties such as the linearity, the shifting property, and so on, remained the same in 2D signals.

  • Linearity:$ \displaystyle af_1(x,y)+bf_2(x,y)------CSFT------ aF_1(u,v)+bF_2(u,v) $
  • Scaling:$ f(\frac{x}{a},\frac{y}{b})--------------CSFT--------|ab|F(au,bv) $
  • Shifting: $ f(x-x_o,y-y_o)------------CSFT-------F(u,v)e^{-j2\pi(ux_o+vy_o)} $
  • Modulation:$ f(x,y)e^{j2\pi(xu_o+yv_o)}----------CSFT---------F(u-u_o,v-v_o) $
  • Reciprocity:$ \displaystyle F(x,y)-------------CSFT ------f(-u,-v) $
  • Parseval’s relation:$ \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|f(x,y)|^2dxdy }=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{|F(u,v)|^2dudv } $
  • Initial value: $ F(0,0)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}{f(x,y)dxdy } $
  • If f(x,y) is real, the magnitued of F(u,v) is an even function; the angle of F(u,v) is an odd function.
    • $ \displaystyle F(u,v)=A(u,v)e^{j\theta(u,v)} $
    • $ \displaystyle F(u,v)=F^{*}(-u,-v) $
    • $ \displaystyle A(u,v)=A(-u,-v) $
    • $ \displaystyle \theta(u,v)=-\theta(-u,-v) $
    • $ f(x,y)=2 \int_0 ^{\infty}\int_{-\infty}^{\infty}{ A(u,v)cos[2 \pi(ux+vy)+ \theta(u,v)] dudv} $

Before we go to the important transform pairs, the separability is a very important property of 2D signals. It enables us to transform 2D signals to our familiar 1D signals. given,

    • $ g(x)-----CSFT-----------G(u) $
    • $ h(y)---- CSFT-----------H(v) $
    • $ f(x,y)-- CSFT------------F(u,v) $

If a function can be rewritten as $ \displaystyle f(x,y)=g(x)h(y) $; then, its fourier transform is $ \displaystyle F(u,v)=G(u)H(v) $.

  • For example, $ \displaystyle rect(x,y)=rect(x)rect(y)----------CSFT------------sinc(u)sinc(v)=sinc(u,v) $
  • Notes: If we are trying to draw rect(x,y) from a top view, it will just look like a square. In the 3D plot, keep the top view as a base, making the height as 1. The plot is a cube. Similar as sinc(u,v).

Another special function is the circ function and the jinc function.

  • $ \displaystyle circ(x,y)------------CSFT----------------jinc(u,v) $
  • Notes: if we are trying to draw circ(x,y) from a top view, it will look like a circle with a radius of ½. In the 3D plot, we keep the top view as a base, making the height as 1. The plot is a cylinder.

Other important transform pairs:

  • $ \displaystyle \delta (x,y)---CSFT---1 $
  • $ \displaystyle 1---CSFT--- \delta (u,v) $
  • $ \displaystyle rect(x)---CSFT---sinc(u) \delta (v) $
  • $ \displaystyle \delta (x)--CSFT---\delta (v) $
  • $ e^{j2\pi(u_ox+v_oy)}---CSFT--- \delta (u-u_o,v-v_o) $
  • $ cos[2\pi(u_ox+v_oy)]---CSFT---\frac{1}{2} [\delta (u-u_o,v-v_o)+\delta (u+u_o,v+v_o)] $

In 2D, we can also change the coordianting system from rectangular to polar form,

    • $ x=rcos(\theta) $----------------$ u=\rho cos(\phi) $
    • $ y=rsin(\theta) $----------------$ v=\rho sin(\phi) $
  • Forward transform-$ F(\rho,\phi)=\int_0 ^{2\pi}\int_0 ^{\infty}{f(r,\theta)e^{-j2\pi\rho r cos(\phi -\theta)}r dr d \theta } $
  • Inverse transform-$ f(r,\theta)=\int_0 ^{2\pi}\int_0 ^{\infty}{F(\rho,\phi)e^{j2\pi\rho r cos(\phi -\theta)}\rho d \rho d \phi } $

Some properties related to the polar representations

  • Rotation $ \displaystyle f(r,\theta +\alpha )-------CSFT-------F(\rho ,\phi + \alpha) $
  • Circular Symmetry $ \displaystyle f(r,\theta)=f_o(r)---------->F(\rho , \phi)=F_o(\rho) $

Convolution Theorem

  • $ \displaystyle f_1(x,y)**f_2(x,y)---CSFT---F_1(u,v)F_2(u,v) $

Product Theorem

  • $ \displaystyle f_1(x,y)f_2(x,y)---CSFT---F_1(u,v)**F_2(u,v) $

Back to ECE438 course page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett