Revision as of 15:04, 22 September 2009 by Crtaylor (Talk | contribs)

Fourier Analysis and the Speech Spectrogram

Background Information

The Fourier Transform is often introduced to students as a construct to evaluate both continuous- and discrete-time signals in the frequency domain. It is first shown that periodic signals can be expressed as sums of harmonically-related complex exponentials of different frequencies. Then, the Fourier Series representation of a signal is developed to determine the magnitude of each frequency component's contribution to the original signal. Finally, the Fourier Transform is calculated to express these coefficients as a function of frequency. For the discrete-time case, the analysis equation is expressed as follows:

$ X(e^{j\omega}) = \sum_{n=-\infty}^\infty x[n] e^{-j\omega n} $

This expression yields what is commonly referred to as the "spectrum" of the original discrete-time signal, x[n]. To demonstrate why this is the case, consider the following discrete-time function:

$ x[n] = cos(2 \pi 10 t ) $

Applying the analysis equation above yields the following Fourier Transform of the signal:

$ X(e^{j\omega}) = \pi \delta (\omega - 20\pi) + \pi \delta (\omega + 20\pi) $

Intuitively, this expression shows that a cosine function is the sum of two complex exponentials with fundamental frequencies of -10 +10 Hertz. Indeed, Euler's Formula provides a way to rewrite the cosine function in this form.

Applying the Fourier Transform

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett