• ===Unit Impulse Response=== The unit impulse response of the system is found by substituting <math>\delta(t)</math> for <math>x(t
    1 KB (204 words) - 17:09, 26 September 2008
  • ===The Unit Impulse Response=== ===HW 4.1 Response===
    550 B (110 words) - 17:36, 26 September 2008
  • Obtain the unit impulse response h(t) and the system function H(s)<br><br> Compute the response of the system to the signal using H(s) and the Fourier series coefficients
    905 B (182 words) - 19:11, 26 September 2008
  • Unit Impulse Response This is also the Laplace transform of the impulse response evaulated .
    1 KB (205 words) - 19:22, 26 September 2008
  • Fourier Transforms and the frequency response of a system. The frequency response has a fundamental relationship to the unit step response through Fourier Transforms as follows
    3 KB (449 words) - 17:07, 8 October 2008
  • * An LTI system has unit impulse response h[n] =u[-n]. Compute the system's response to the input <math>x[n] = 2^{n}u[-n].</math> Simplify your answer until all
    725 B (114 words) - 14:31, 10 October 2008
  • An LTI system has unit impulse response <math> h[n] = u[-n] </math> Compute the system's response to the input <math> x[n] = 2^{n}u[-n] </math>
    907 B (154 words) - 10:57, 12 October 2008
  • ...has unit impulse response <math>h[n] = u[-n]</math>. compute the system's response to the
    751 B (125 words) - 11:06, 14 October 2008
  • ...as unit impulse response <math> h[n] = u[-n] </math>. Compute the system's response to the input <math> x[n] = 2^nu[-n] </math>. (simplify your answer until al
    1 KB (189 words) - 07:52, 22 October 2008
  • ...Compute (a) the system's function <math>H(z)</math> and (b) the system's response to the input <math>x[n]=\cos(\pi n)</math>. The response to the input signal <math>z^n</math> is <math>H(z)z^n</math>, giving
    680 B (127 words) - 03:59, 15 October 2008
  • ...tem has unit impulse response <math>h[n]=u[-n]</math> Compute the system's response to the input <math> x[n]=2^{n}u[-n].</math>(Simplify your answer until all
    748 B (146 words) - 10:56, 15 October 2008
  • ...Compute (a) the system's function <math>H(z)</math> and (b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
    919 B (166 words) - 14:34, 15 October 2008
  • An LTI system has unit impulse response <math>h[n] = u[n] - u[n - 2]\,</math>. b)Use the answer from a) to compute the system's response to the input <math>x[n] = cos(\pi n)\,</math>
    577 B (102 words) - 15:16, 15 October 2008
  • '''Problem 5''' An LTI system has unit impulse response h[n] = u[n] -u[n-2]. b.) Use your answer in a) to compute the system's response to the input x[n] = cos(pi n)
    403 B (78 words) - 15:27, 15 October 2008
  • An LTI system has unit impulse response h[n] = u[n] - u[n-2]. b) the system's response to the input <math>x[n]=\cos(\pi n)</math>.
    568 B (112 words) - 16:14, 15 October 2008
  • An LTI system has unit impulse response h[n]=u[n]-u[n-2]. b) Use your answer in a) to compute the system's response to the input x[n] = cos(<math>\pi</math>n).
    814 B (167 words) - 18:03, 15 October 2008
  • An LTI system has unit impulse response <math>h[n] = u[n] - u[n-2]\,</math>. b) What is the system response to the input <math>x[n]=\cos(\pi n)\,</math>.
    543 B (107 words) - 18:07, 15 October 2008
  • The impulse response of an LTI system is <math>h(t)=e^{-2t}u(t)+u(t+2)-u(t-2)</math>. What is the Frequency response <math>H(j\omega)</math> of the system?
    4 KB (753 words) - 16:48, 23 April 2013
  • ...thcal{F}((a)^n u[n]) = \frac{1}{1-a}, a<0 \,</math>, thus the unit impulse response for <math>\mathcal{X}(\omega)\,</math> is ...is <math> \frac{1}{1-ae^{-j\omega}}, a<1 \,</math>, thus the unit impulse response for <math>\mathcal{X}(\omega)\,</math> is
    11 KB (1,951 words) - 03:48, 25 March 2011
  • ...a})</math>, the unit impulse response <math>\,h[n]</math>, or the system's response to an input <math>\,x[n]</math>.
    4 KB (633 words) - 11:13, 24 October 2008
  • == Frequency Response == Frequency response in CT and DT are very similar. They both have the form of <math>\ Y(\omega)
    2 KB (255 words) - 16:12, 24 October 2008
  • :(b) an ability to determine the impulse response of a differential or difference equation. [1,2;a] :(c) an ability to determine the response of linear systems to any input signal convolution in the time domain. [1,2,
    7 KB (1,017 words) - 10:05, 11 December 2008
  • ...o a system with its impulse response is the same as convolving the impulse response with the input. ...adding the output is the same as convolving the input with the sum of the impulse responses.
    1 KB (190 words) - 21:15, 16 March 2008
  • ...The output is simply the convolution of the input and the system's impulse response.
    821 B (137 words) - 16:22, 20 March 2008
  • ...impulses, we can then apply the 'effect' of the system to each individual impulse of the signal, sum them, and find the resulting output. ...now to find the output of a LTI system is its input and its response to an impulse function'''?
    2 KB (305 words) - 11:17, 24 March 2008
  • Find the frequency response H(|omega|) and the impulse response h[n] of the system. **Frequency Response:**
    1 KB (198 words) - 19:08, 4 April 2008
  • ##[[The unit impulse and unit step functions_Old Kiwi]] ##[[Unit step response of an LTI system_Old Kiwi]]
    4 KB (531 words) - 11:32, 25 July 2008
  • ...se response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's
    956 B (170 words) - 16:23, 3 July 2008
  • ...se response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's
    954 B (175 words) - 16:56, 30 June 2008
  • * Finding System properties of LTI systems from properties of the impulse response
    5 KB (643 words) - 11:55, 6 August 2009
  • * Finding [[LTI system properties]] from the impulse response
    1 KB (152 words) - 04:06, 23 July 2009
  • * A knowledge of impulse response functions and convolution for linear systems.
    7 KB (1,153 words) - 14:06, 24 August 2009
  • |Homework 3 due – Impulse Response of LTI Systems
    1 KB (190 words) - 15:00, 24 August 2009
  • ...place. "The output of a LTI system is the input convolved with the impulse response of the system." Why? How is the math producing the results you expect? --[[
    14 KB (2,366 words) - 17:32, 21 April 2013
  • ...urce transformation; Thevenin's and Norton's theorems; superposition. Step response of 1st order (RC, RL) and 2nd order (RLC) circuits. Phasor analysis, impeda &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;* Impulse Function δ(t)<br/>
    6 KB (873 words) - 17:02, 15 April 2013
  • <br/>ii. an ability to determine the the impulse response of a differential or difference equation. <br/>iii. an ability to determine the response of linear systems to any input signal by convolution in the time domain.
    3 KB (394 words) - 07:08, 4 May 2010
  • <br> The figure below shows us the impulse response of the filter defined by the equation above. ! [[Image:freq_resp.jpg|thumb|400px|freq response]]
    13 KB (2,348 words) - 13:25, 2 December 2011
  • What is the unit impulse response of this system?
    2 KB (327 words) - 03:55, 24 September 2010
  • For question 2c, will the impulse response just be the convolution of a unit impulse with the transfer function ho(t) (given on pg 521 fig 7.7 of Oppenheim-Will
    1 KB (159 words) - 03:56, 29 September 2010
  • ...ted signal <math>x_r(t)</math> is the output of a filter when we input the impulse train of <math>x(t)</math> with period <math>T</math>. ...response of this filter is <math>\text{sinc}(t/T)</math>, whose frequency response is a ideal low-pass filter with the cut-off frequency of <math>1/(2T)</math
    4 KB (751 words) - 04:56, 2 October 2011
  • Q1. Find the impulse response of the following LTI systems and draw their block diagram. (assume that the impulse response is causal and zero when <math>n<0</math>)
    3 KB (462 words) - 10:42, 11 November 2011
  • First, find the impulse response of <math>h_1[n]</math>. (we assumed that <math>h_1[n]=0</math> when <math>n Then, the difference equation of the LTI system with the impulse reponss of <math>h_2[n]</math> is,
    1 KB (200 words) - 11:20, 13 October 2010
  • Obtain the frequency response and the transfer function for each of the following systems: Find the response of this system to the input
    4 KB (661 words) - 11:22, 30 October 2011
  • ...l. Thus if one is trying to define a causal system for which the frequency response is well defined, then the poles of the transfer function should all be insi
    2 KB (329 words) - 12:04, 18 October 2010
  • :b. Find the frequency response <math>H(w)</math> from the difference equation by the following two approac ::ii. find the DTFT of the impulse response,
    3 KB (480 words) - 10:42, 11 November 2011
  • a. Compute the impulse response h[n] of the system.
    3 KB (553 words) - 17:21, 20 October 2010
  • a. System impulse response is the system output when input is impulse signal. c. Hint: The magnitude response looks like a sinc function with cut off frequency of <math>\pm \frac{2\pi}{
    1 KB (202 words) - 17:50, 20 October 2010
  • ...ut is the product of the DFT of the input, and the DFT of the unit impulse response of the system: ...tion. We also had to worry about the fact that the input, the unit impulse response, and the output have different durations, and so we need to make sure to us
    1 KB (191 words) - 04:39, 27 October 2010
  • #The filter has a zero frequency response at <math>\omega=0 </math> and <math>\omega=\pi </math>. In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume t
    2 KB (322 words) - 13:00, 26 November 2013
  • :b. Compute the impulse response <math>h[n]</math> using a ROC of <math>|z|>a</math>. For what values of <ma :c. Compute the impulse response <math>h[n]</math> using a ROC of <math>|z|<a</math>. For what values of <ma
    3 KB (479 words) - 10:42, 11 November 2011

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn