Page title matches

Page text matches

  • A & B are independent if <math>P(A\cap B)=P(A)P(B)</math> side note: if A&B are independent then P(A|B)=P(A)
    3 KB (525 words) - 13:04, 22 November 2011
  • == Problem 1: Arbitrary Random Variables == Let <math>U</math> be a uniform random variable on [0,1].
    4 KB (596 words) - 12:57, 22 November 2011
  • *The sum of many, small independent things For 2 independent Gaussians:
    4 KB (722 words) - 13:05, 22 November 2011
  • The PDF of the sum of two independent random variables is the convolution of the two PDFs. The lecture notes from 10/10 are helpf
    133 B (23 words) - 19:13, 19 October 2008
  • == Problem 1: Random Point, Revisited== In the following problems, the random point (X , Y) is uniformly distributed on the shaded region shown.
    4 KB (703 words) - 12:58, 22 November 2011
  • ...observed should be the sum or mean of many independent random variables. (variables need not be iid)(See the PROOF ) undirected graphs (Markov random fields), probabilistic decision trees/models have a number of
    31 KB (4,832 words) - 18:13, 22 October 2010
  • ...ormally distributed random numbers : ex) RANDN(N) is an N-by-N matrix with random entries, chosen from a normal distribution with mean zero, variance one and ...ro generate a vecort of n-gaussian random variables ? can this be called a random vector ? BAsically my question is how do we simulate gaussian data whcih h
    10 KB (1,594 words) - 11:41, 24 March 2008
  • which datasets with tens or hundreds of thousands of variables are available. These areas include ...tion of the nearest of a set of previously classified points. This rule is independent of the underlying joint distribution on the sample points and their classif
    39 KB (5,715 words) - 10:52, 25 April 2008
  • ...ion case, there will be very large set of feature vectors and classes, and independent of the probability distributions of features, the sum of the distributions The following histograms of N uniformly distributed random variables for different values of N can be given to visualize the [http://en.wikipedi
    2 KB (247 words) - 08:32, 10 April 2008
  • ...iable" being observed should be the sum or mean of many independent random variables.
    213 B (35 words) - 10:01, 31 March 2008
  • | align="right" style="padding-right: 1em;" | The intersection of two independent events A and B ...e-policy: -moz-initial;" colspan="2" | Expectation and Variance of Random Variables
    3 KB (491 words) - 12:54, 3 March 2015
  • let X1,X2,...,Xn be n independent and identically distributed variables (i.i.d) with finite mean <math>\mu</math> and finite variance <math>\sigma^ More precisely the random variable <math>Z_n = \frac{\Sigma_{i=1}^n X_i - n \mu}{\sigma \sqrt{n}}</ma
    5 KB (806 words) - 09:08, 11 May 2010
  • ...I reduced it to [1 2 3; 0 -3 -3]. I'm not even sure whether plugging in random values was the right idea, but I'm stuck here. How do I proceed from here? ...That's like doing an experiment in science. You'd have to plug in lots of random values if you were doing science, but you'd miss the key points in math. Y
    4 KB (756 words) - 04:25, 8 September 2010
  • ...observed should be the sum or mean of many independent random variables. (variables need not be iid)(See the PROOF ) undirected graphs (Markov random fields), probabilistic decision trees/models have a number of
    31 KB (4,787 words) - 18:21, 22 October 2010
  • = [[ECE]] 600: Random Variables and Stochastic Processes = :*[[ECE 600 Sequences of Random Variables|2. Sequences of Random Variables]]
    2 KB (238 words) - 12:14, 25 September 2013
  • [[Category:random variables]] Question 1: Probability and Random Processes
    1 KB (191 words) - 17:42, 13 March 2015
  • [[Category:random variables]] Question 1: Probability and Random Processes
    5 KB (928 words) - 17:46, 13 March 2015
  • =Addition of two independent Poisson random variables = ...athbf{X}</math> and <math>\mathbf{Y}</math> are independent Poisson random variables with means <math>\lambda</math> and <math>\mu</math>, respectively.
    3 KB (557 words) - 12:11, 25 September 2013
  • == Example. Two jointly distributed random variables == Two joinly distributed random variables <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> have joint pdf
    7 KB (1,103 words) - 05:27, 15 November 2010
  • == Example. Addition of two independent Gaussian random variables == ...is the pdf you determined in part (b)? What is the mean and variance of a random variable with this pdf?
    6 KB (939 words) - 04:20, 15 November 2010

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal