Example. Addition of two independent Gaussian random variables

$ \mathbf{X}\sim\mathcal{N}\left(0,\sigma_{\mathbf{X}}^{2}\right),\;\mathbf{N}\sim\mathcal{N}\left(0,\sigma_{\mathbf{N}}^{2}\right),\;\mathbf{Y}=\mathbf{X}+\mathbf{N}. $

(a)

Correlation coefficient between $ \mathbf{X} $ and $ \mathbf{Y} $ .

$ \sigma_{\mathbf{Y}}=\sqrt{\sigma_{\mathbf{X}}^{2}+2r_{\mathbf{XN}}\sigma_{\mathbf{X}}\sigma_{\mathbf{N}}+\sigma_{\mathbf{N}}^{2}}=\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}} $

because $ \mathbf{X} $ and $ \mathbf{N} $ are independnet $ \Longrightarrow $ uncorrelated $ \Longrightarrow r_{\mathbf{XN}}=0 $ .

$ r_{\mathbf{XY}}=\frac{\text{cov}(\mathbf{X},\mathbf{Y})}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}=\frac{E\left[\mathbf{XY}\right]-E\left[\mathbf{X}\right]E\left[\mathbf{Y}\right]}{\sigma_{\mathbf{X}}\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}=\frac{E\left[\mathbf{X}\left(\mathbf{X}+\mathbf{N}\right)\right]}{\sigma_{\mathbf{X}}\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}=\frac{E\left[\mathbf{X}^{2}\right]+E\left[\mathbf{XN}\right]}{\sigma_{\mathbf{X}}\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}} $$ =\frac{\sigma_{\mathbf{X}}^{2}+E\left[\mathbf{X}\right]E\left[\mathbf{N}\right]}{\sigma_{\mathbf{X}}\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}=\frac{\sigma_{\mathbf{X}}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}\qquad\because E\left[\mathbf{X}\right]=0. $

(b)

Conditional pmf of $ \mathbf{X} $ conditioned on the event $ \left\{ \mathbf{Y}=y\right\} $ .

$ f_{\mathbf{X}}\left(x|\left\{ \mathbf{Y}=y\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}(y)}=\frac{\frac{1}{2\pi\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{x^{2}}{\sigma_{\mathbf{X}}^{2}}-\frac{2rxy}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}+\frac{y^{2}}{\sigma_{\mathbf{Y}}^{2}}\right]\right\} }{\frac{1}{\sqrt{2\pi}\sigma_{Y}}\exp\left\{ \frac{-y^{2}}{2\sigma_{Y}^{2}}\right\} } $$ =\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{x^{2}}{\sigma_{\mathbf{X}}^{2}}-\frac{2rxy}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}+\frac{y^{2}}{\sigma_{\mathbf{Y}}^{2}}-\frac{\left(1-r^{2}\right)y^{2}}{\sigma_{\mathbf{Y}}^{2}}\right]\right\} $ $ =\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{x^{2}}{\sigma_{\mathbf{X}}^{2}}-\frac{2rxy}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}+\frac{r^{2}y^{2}}{\sigma_{\mathbf{Y}}^{2}}\right]\right\} $ $ =\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)\sigma_{\mathbf{X}}^{2}}\left[x^{2}-\frac{2r\sigma_{\mathbf{X}}xy}{\sigma_{\mathbf{Y}}}+\frac{r^{2}\sigma_{\mathbf{X}}^{2}y^{2}}{\sigma_{\mathbf{Y}}^{2}}\right]\right\} $ $ =\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)\sigma_{\mathbf{X}}^{2}}\left(x-\frac{r\sigma_{\mathbf{X}}y}{\sigma_{\mathbf{Y}}}\right)^{2}\right\} $

Noting that $ \sqrt{1-r^{2}}=\sigma_{\mathbf{X}}\sqrt{1-\left(\frac{\sigma_{\mathbf{X}}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{Y}}^{2}}}\right)^{2}}=\sqrt{1-\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{Y}}^{2}}}=\sqrt{\frac{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}-\sigma_{\mathbf{N}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}=\frac{\sigma_{\mathbf{N}}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}} $ and

$ r\cdot\frac{\sigma_{\mathbf{X}}}{\sigma_{\mathbf{Y}}}=\frac{\sigma_{X}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}\cdot\frac{\sigma_{\mathbf{X}}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}=\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}. $ $ \therefore f_{\mathbf{X}}\left(x|\left\{ \mathbf{Y}=y\right\} \right)=\frac{1}{\sqrt{2\pi}\cdot\frac{\sigma_{\mathbf{X}}\sigma_{\mathbf{N}}}{\sqrt{\sigma_{\mathbf{X}}^{2}+\mathbf{\sigma}_{\mathbf{N}}^{\mathbf{2}}}}}\exp\left\{ \frac{-1}{2\frac{\sigma_{\mathbf{X}}^{2}\sigma_{\mathbf{N}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}}\left(x-\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}\cdot y\right)^{2}\right\} $

(c)

What kind of pdf is the pdf you determined in part (b)? What is the mean and variance of a random variable with this pdf?

This is a Gaussian pdf with mean $ \frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}}\cdot y $ and variance $ \frac{\sigma_{\mathbf{X}}^{2}\sigma_{\mathbf{N}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{N}}^{2}} $ .

(d)

What is the minimum mean-square estimate of $ \mathbf{X} $ given that $ \left\{ \mathbf{Y}=y\right\} $  ?

The minimum mean-square error estimate of $ \mathbf{X} $ given $ \mathbf{Y}=y $ is

$ \hat{x}_{MMS}(y)=E\left[\mathbf{X}|\left\{ \mathbf{Y}=y\right\} \right]=\int_{-\infty}^{\infty}x\cdot f_{\mathbf{X}}\left(x|\left\{ \mathbf{Y}=y\right\} \right)dx=\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{Y}}^{2}}\cdot y $ from part (b).

(e)

What is the maximum a posteriori estimate of $ \mathbf{X} $ given that $ \left\{ \mathbf{Y}=y\right\} $  ?

$ \hat{x}_{MAP}(y)=\arg\max_{x\in\mathbf{R}}\left\{ f_{\mathbf{X}}\left(x|\left\{ Y=y\right\} \right)\right\} =\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{Y}}^{2}}\cdot y $

as a Gaussian pdf takes on its maximum value at its mean.

(f)

Given that I observe $ \mathbf{Y}=y $ , what is $ E\left[\mathbf{X}|\left\{ \mathbf{Y}=y\right\} \right] $ ?

$ E\left[\mathbf{X}|\left\{ \mathbf{Y}=y\right\} \right]=\frac{\sigma_{\mathbf{X}}^{2}}{\sigma_{\mathbf{X}}^{2}+\sigma_{\mathbf{Y}}^{2}}\cdot y $ from part (d).


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang