(New page with lecture material)
 
 
Line 1: Line 1:
Review of iterative solutions to partial differential equations.
+
=Review of iterative solutions to partial differential equations.=
  
[It may be useful to paste some material from [[Lecture 28 - Final lecture_Old Kiwi]] here]
+
It may be useful to paste some material from [[Lecture 28 - Final lecture_Old Kiwi| here]]
  
 
<center><math>
 
<center><math>
Line 7: Line 7:
 
<center><math>
 
<center><math>
 
\frac{x(t+\Delta t)-x(t)}{\Delta t}=2</math></center>
 
\frac{x(t+\Delta t)-x(t)}{\Delta t}=2</math></center>
<center><math>
+
<center><math> x(t+\Delta t)= x(t)+2 \Delta t \ </math></center>
x(t+\Delta t)=x(t)+\Delta t2</math></center>
+
 
 
Now pick an initial t, say <math>t=0</math>. Assume a boundary condition, <math>x(0)=7</math>.  
 
Now pick an initial t, say <math>t=0</math>. Assume a boundary condition, <math>x(0)=7</math>.  
  
 
Then <math>x(0)=x_{0}</math>, so <math>x_{0}=7</math>.
 
Then <math>x(0)=x_{0}</math>, so <math>x_{0}=7</math>.
  
Then <math>x(\Delta t)=x_{1}</math>, so <math>x_{1}=7+\Delta t2=7.2</math> (We pick <math>\Delta t=0.2</math>)
+
Then <math>x(\Delta t)=x_{1}</math>, so <math>x_{1}=7+\Delta t2=7.2 </math> (We pick <math>\Delta t=0.2</math>)
  
 
Then <math>x(2\Delta t)=x_{2}</math>, so <math>x_{2}=7.2+\Delta t2=7.4</math>
 
Then <math>x(2\Delta t)=x_{2}</math>, so <math>x_{2}=7.2+\Delta t2=7.4</math>
  
 
[Plot of solution]
 
[Plot of solution]
 +
----

Latest revision as of 12:19, 22 October 2010

Review of iterative solutions to partial differential equations.

It may be useful to paste some material from here

$ \frac{dx}{dt}=2 $
$ \frac{x(t+\Delta t)-x(t)}{\Delta t}=2 $
$ x(t+\Delta t)= x(t)+2 \Delta t \ $

Now pick an initial t, say $ t=0 $. Assume a boundary condition, $ x(0)=7 $.

Then $ x(0)=x_{0} $, so $ x_{0}=7 $.

Then $ x(\Delta t)=x_{1} $, so $ x_{1}=7+\Delta t2=7.2 $ (We pick $ \Delta t=0.2 $)

Then $ x(2\Delta t)=x_{2} $, so $ x_{2}=7.2+\Delta t2=7.4 $

[Plot of solution]


Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett