Line 1: Line 1:
 
<center><font size= 4>
 
<center><font size= 4>
'''[[Signals_and_systems_practice_problems_list|Practice Problem on "Signals and Systems"]]'''
+
'''[[Signals_and_systems_practice_problems_list|Practice Question on "Signals and Systems"]]'''
 
</font size>
 
</font size>
  
Topic: Signal Energy and Power
 
  
 +
[[Signals_and_systems_practice_problems_list|More Practice Problems]]
 +
 +
 +
Topic: Signal Energy and Power
 
</center>
 
</center>
 
----
 
----
 
==Question==
 
==Question==
 +
 
Compute the energy <math>E_\infty</math> and the power <math>P_\infty</math> of the following discrete-time signal  
 
Compute the energy <math>E_\infty</math> and the power <math>P_\infty</math> of the following discrete-time signal  
  

Latest revision as of 16:18, 26 November 2013

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

x[n] = j

What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |j|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


So $ E_{\infty} = \infty $.

Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --Mboutin 19:31, 13 January 2011 (UTC)

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |j|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


So $ P_{\infty} = 1 $. 

--Rgieseck 21:35, 12 January 2011

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin