(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
= Compute the energy <math>E_\infty</math> and the power <math>P_\infty</math> of the following discrete-time signal =
+
<center><font size= 4>
 +
'''[[Signals_and_systems_practice_problems_list|Practice Question on "Signals and Systems"]]'''
 +
</font size>
 +
 
 +
 
 +
[[Signals_and_systems_practice_problems_list|More Practice Problems]]
 +
 
 +
 
 +
Topic: Signal Energy and Power
 +
</center>
 +
----
 +
==Question==
 +
 
 +
Compute the energy <math>E_\infty</math> and the power <math>P_\infty</math> of the following discrete-time signal  
  
 
  <span class="texhtml">''x''[''n''] = ''j''</span>
 
  <span class="texhtml">''x''[''n''] = ''j''</span>
Line 25: Line 38:
  
 
So <math>E_{\infty} = \infty</math>.  
 
So <math>E_{\infty} = \infty</math>.  
 +
 +
:<span style="color: green;"> Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --[[User:Mboutin|Mboutin]] 19:31, 13 January 2011 (UTC)  </span>
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 32: Line 47:
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1  \\
 
&= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1  \\
&= \lim_{N\rightarrow \infty}{2N \over {2N+1}}  \\
+
&= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}}  \\
&= \lim_{N\rightarrow \infty}{2 \over {2}\\
+
&= \lim_{N\rightarrow \infty}{1}\\
 
&= 1  \\
 
&= 1  \\
  
Line 40: Line 55:
 
   
 
   
 
  So <math>P_{\infty} = 1</math>.  
 
  So <math>P_{\infty} = 1</math>.  
 
:<span style="color: green;"> Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --[[User:Mboutin|Mboutin]] 19:31, 13 January 2011 (UTC)  </span>
 
  
 
--[[User:Rgieseck|Rgieseck]] 21:35, 12 January 2011  
 
--[[User:Rgieseck|Rgieseck]] 21:35, 12 January 2011  
Line 57: Line 70:
 
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]  
 
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]  
  
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
+
[[Category:ECE301Spring2011Boutin]]  
 +
[[Category:Problem_solving]]
 +
[[Category:signal power]]
 +
[[Category:signal energy]]
 +
[[Category:discrete-time signal]]
 +
[[Category:complex numbers]]
 +
[[Category:Complex Number Magnitude]]
 +
[[Category:ECE438]]

Latest revision as of 16:18, 26 November 2013

Practice Question on "Signals and Systems"


More Practice Problems


Topic: Signal Energy and Power


Question

Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following discrete-time signal

x[n] = j

What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |j|^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $


So $ E_{\infty} = \infty $.

Instructors comment: Good job! The answer is correct and the justification is very clear. Now can someone compute the power? --Mboutin 19:31, 13 January 2011 (UTC)

$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |j|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{jj^*})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N {(\sqrt{-j^2})}^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $


So $ P_{\infty} = 1 $. 

--Rgieseck 21:35, 12 January 2011

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett