Revision as of 13:35, 12 November 2010 by Mboutin (Talk | contribs)

Basic Signals and Functions in one variable
Continuous-time signals
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ for }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }t\in {\mathbb R} $
Discrete-time signals
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ for }n\in {\mathbb Z} $
CT unit impulse (Dirac Delta)
Basic Signals and Functions in two variables
Continuous-time

(info) 2D sinc dirac delta

$ \delta(x,y)=\delta(x) \delta(y) $

(info) 2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2} $

(info) 2D rect function

$ rect(x,y)= \left\{ \begin{array}{ll}1, & |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ for }x,y\in {\mathbb R} $

Back to Collective Table

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett