(New page: * The determinant of any identity matrix is always 1. * If you switch the rows or columns of a matrix, its determinant stays the same. * If you multiply a row (or column) of a matrix (call...)
 
 
Line 1: Line 1:
 
* The determinant of any identity matrix is always 1.
 
* The determinant of any identity matrix is always 1.
 
* If you switch the rows or columns of a matrix, its determinant stays the same.
 
* If you switch the rows or columns of a matrix, its determinant stays the same.
* If you multiply a row (or column) of a matrix (call it A) by a number k, then the determinant of that matrix is k*det(A). For example, if <math>A=\begin{bmatrix}
+
* If you multiply a row (or column) of a matrix (call it A) by a number k, then the determinant of that matrix is k*det(A). For example, if <br>
 +
<math>A=\begin{bmatrix}
 
1 & 2 & 3\\
 
1 & 2 & 3\\
 
2 & 3 & 5\\
 
2 & 3 & 5\\
 
3 & 5 & 0\end{bmatrix}</math>
 
3 & 5 & 0\end{bmatrix}</math>
 
+
<br>then det(A)=8. Thus you can conclude if you multiply the top row by 10 (call the resulting matrix B), then det(B)=10*det(A)=80.<br>
then det(A)=8. Thus you can conclude if you multiply the top row by 10 (call the resulting matrix B), then det(B)=10*det(A)=80.
+
<math>\text{det}\begin{pmatrix}10 & 20 & 30\\
<math>det\begin{pmatrix}10 & 20 & 30\\
+
 
2 & 3 & 5\\
 
2 & 3 & 5\\
 
3 & 5 & 0\end{pmatrix}=80</math>
 
3 & 5 & 0\end{pmatrix}=80</math>
 
* If you [[transpose]] a matrix (ie turn the rows into columns, and columns into rows), the determinant stays the same.
 
* If you [[transpose]] a matrix (ie turn the rows into columns, and columns into rows), the determinant stays the same.
* If you multiply matrices and take the determinant, the result is the same as taking the determinants, and then multiplying the determinants.  <math>det(A)*det(B)=det(A*B)</math>.
+
* If you multiply matrices and take the determinant, the result is the same as taking the determinants, and then multiplying the determinants.  <math>\text{det}(A)*\text{det}(B)=\text{det}(A*B)</math>.
 
* It follows that det(A^{-1})=1/det(A).
 
* It follows that det(A^{-1})=1/det(A).
* It also follows from the above statement that if a matrix <math>B=S^{-1}AS</math>, then <math>det(B)=det(S^{-1}AS)=det(S^{-1})*det(A)*det(S)=det(S)/det(S)*det(A)=det(A).</math>
+
* It also follows from the above statement that if a matrix <math>B=S^{-1}AS</math>, then <br>
 +
<math>\begin{align}\text{det}(B) & =\text{det}(S^{-1}AS) \\
 +
& =\text{det}(S^{-1})*\text{det}(A)*\text{det}(S) \\
 +
& =\text{det}(S)/\text{det}(S)*\text{det}(A) \\
 +
& =\text{det}(A). \\ \end{align} </math>
  
 
[[Category:MA351]]
 
[[Category:MA351]]

Latest revision as of 10:27, 9 April 2010

  • The determinant of any identity matrix is always 1.
  • If you switch the rows or columns of a matrix, its determinant stays the same.
  • If you multiply a row (or column) of a matrix (call it A) by a number k, then the determinant of that matrix is k*det(A). For example, if

$ A=\begin{bmatrix} 1 & 2 & 3\\ 2 & 3 & 5\\ 3 & 5 & 0\end{bmatrix} $
then det(A)=8. Thus you can conclude if you multiply the top row by 10 (call the resulting matrix B), then det(B)=10*det(A)=80.
$ \text{det}\begin{pmatrix}10 & 20 & 30\\ 2 & 3 & 5\\ 3 & 5 & 0\end{pmatrix}=80 $

  • If you transpose a matrix (ie turn the rows into columns, and columns into rows), the determinant stays the same.
  • If you multiply matrices and take the determinant, the result is the same as taking the determinants, and then multiplying the determinants. $ \text{det}(A)*\text{det}(B)=\text{det}(A*B) $.
  • It follows that det(A^{-1})=1/det(A).
  • It also follows from the above statement that if a matrix $ B=S^{-1}AS $, then

$ \begin{align}\text{det}(B) & =\text{det}(S^{-1}AS) \\ & =\text{det}(S^{-1})*\text{det}(A)*\text{det}(S) \\ & =\text{det}(S)/\text{det}(S)*\text{det}(A) \\ & =\text{det}(A). \\ \end{align} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett