Line 30: Line 30:
  
 
whoops, I was doing the homework. is that correct? - ksoong <span style="color:green">
 
whoops, I was doing the homework. is that correct? - ksoong <span style="color:green">
: Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that <math>e^{ 2 \pi j}=1</math> to rewrite x[n] as a positive power of e. (Just add <math>2 \pi  j</math> to the exponent of e).  -pm </span>
+
: Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that <math>e^{ 2 \pi n j}=1</math> to rewrite x[n] as a positive power of e. (Just add <math>2 \pi n j</math> to the exponent of e).  -pm </span>
  
<math>x[n] = \frac{1}{3} \cdot (X[0] + X[1]e^{-j(\frac{2\pi}{3}n)} + X[2]e^{-j(\frac{2\pi}{3}(2)n)})</math>  
+
<math>
 +
\begin{align}
 +
x[n]&= e^{-j \frac{2}{3} \pi n} \\
 +
&=  e^{-j \frac{2}{3} \pi n} e^{j 2 \pi n} \text{ (since this is the same as multiplying by one, for any integer n)}\\
 +
&= e^{-j \frac{2}{3} \pi n +j 2 \pi n } \\
 +
& = e^{j \frac{4}{3} \pi n} \\
 +
& = e^{j 2 \frac{2\pi n }{3} } 
 +
\end{align}
 +
</math>
 +
 
 +
Now compare with the inverse DFT formula.
 +
 
 +
<math>x[n] =... </math>
 +
 
 +
please continue. -pm
 +
 
 +
 
----
 
----
  

Revision as of 04:21, 19 October 2010

Practice Question 1, ECE438 Fall 2010, Prof. Boutin

On Computing the DFT of a discrete-time periodic signal


Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

- AJFunche Nice effort! -pm----


$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}} $

$ x[n] = \frac{1}{3}\sum_{k=0}^{2} X[k]e^{j\frac{2\pi}{3}kn} $

$ x[n] = \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}n + 2\pi)} + X[2]e^{j(\frac{2\pi}{3}(2)n + 2\pi)}) $

Notice that all the powers of e in this expression are positive, but the signal x[n] is expressed as a negative power of e, so you cannot compare just yet. -pm

whoops, I was doing the homework. is that correct? - ksoong

Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that $ e^{ 2 \pi n j}=1 $ to rewrite x[n] as a positive power of e. (Just add $ 2 \pi n j $ to the exponent of e). -pm

$ \begin{align} x[n]&= e^{-j \frac{2}{3} \pi n} \\ &= e^{-j \frac{2}{3} \pi n} e^{j 2 \pi n} \text{ (since this is the same as multiplying by one, for any integer n)}\\ &= e^{-j \frac{2}{3} \pi n +j 2 \pi n } \\ & = e^{j \frac{4}{3} \pi n} \\ & = e^{j 2 \frac{2\pi n }{3} } \end{align} $

Now compare with the inverse DFT formula.

$ x[n] =... $

please continue. -pm



  • Answer/question
  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang