Line 12: Line 12:
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
  
<math> N=3 </math>
+
<math> N=3 </math> <span style="color:green"> That's correct! -pm </span>
  
 
<math>x[n]= e^{-j \frac{2}{3} \pi n}</math>
 
<math>x[n]= e^{-j \frac{2}{3} \pi n}</math>
  
<math> X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)}</math>
+
<math> X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)}</math> <span style="color:green"> You are using the long route, instead of the short route. -pm </span>
  
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math>
+
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math> <span style="color:green"> This gives you a very complicated answer. -pm </span>
  
?- AJFunche
+
?- AJFunche <span style="color:green"> Nice effort! -pm </span>
 +
----
  
 
*Answer/question
 
*Answer/question

Revision as of 16:09, 18 October 2010

Practice Question 1, ECE438 Fall 2010, Prof. Boutin

On Computing the DFT of a discrete-time periodic signal


Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

?- AJFunche Nice effort! -pm


  • Answer/question
  • Answer/question
  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang