Line 12: Line 12:
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
 
<math> X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
  
<math> N=3 </math>
+
<math> N=3 </math> <span style="color:green"> That's correct! -pm </span>
  
 
<math>x[n]= e^{-j \frac{2}{3} \pi n}</math>
 
<math>x[n]= e^{-j \frac{2}{3} \pi n}</math>
  
<math> X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)}</math>
+
<math> X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)}</math> <span style="color:green"> You are using the long route, instead of the short route. -pm </span>
  
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math>
+
<math> X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)}</math> <span style="color:green"> This gives you a very complicated answer. -pm </span>
  
?- AJFunche
+
?- AJFunche <span style="color:green"> Nice effort! -pm </span>
 +
----
  
 
*Answer/question
 
*Answer/question

Revision as of 16:09, 18 October 2010

Practice Question 1, ECE438 Fall 2010, Prof. Boutin

On Computing the DFT of a discrete-time periodic signal


Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

?- AJFunche Nice effort! -pm


  • Answer/question
  • Answer/question
  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn