(Answer #7 added)
Line 23: Line 23:
 
=== Answer 1  ===
 
=== Answer 1  ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
Line 42: Line 42:
  
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Kyungjun Kim
 
 
 
Using a partial fraction expansion, we can change the original equation to  
 
Using a partial fraction expansion, we can change the original equation to  
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> Where A = 1, B = -1, so we get <span style="color:green"> (Instructor's comment: You can skip this explanation and write the expansion directly)</span>
  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
  
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of  
+
By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of <span style="color:green"> (Instructor's comment: No need to explain this.)</span>
  
 
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>  
 
<math> \frac{1}{1-r} </math>, which is equal to <math> \sum_{n=0}^{+\infty} (\frac{1}{r})^n </math>  
Line 70: Line 67:
  
 
=== Answer 3  ===
 
=== Answer 3  ===
 
By Yeong Ho Lee
 
 
 
First, using partial fraction we get..  
 
First, using partial fraction we get..  
  
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
A(2-z) + B(3-z) = 1  
+
A(2-z) + B(3-z) = 1
  
 
let z=2, then B=1  
 
let z=2, then B=1  
  
let z=3, then A=-1  
+
let z=3, then A=-1 <span style="color:green"> (Instructor's comment: You do not need to explain how you got the A and the B. )</span>
  
 
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>  
 
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>  
Line 105: Line 99:
 
=== Answer 4  ===
 
=== Answer 4  ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z} - \frac{1}{2-z}</math>  
Line 129: Line 123:
 
by partical fraction, we get,  
 
by partical fraction, we get,  
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math>= -\frac{1}{3-z}+\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}+\frac{1}{2-z}</math>  
Line 149: Line 143:
 
=== Answer 6  ===
 
=== Answer 6  ===
  
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
  
 
<math> = \frac{1}{2-z}-\frac{1}{3-z}</math>
 
<math> = \frac{1}{2-z}-\frac{1}{3-z}</math>
Line 176: Line 170:
 
<math>X(z) =\frac{1}{(3-z)(2-z)}</math>
 
<math>X(z) =\frac{1}{(3-z)(2-z)}</math>
  
<math>= \frac{A}{3-z}+\frac{B}{2-z}</math>  
+
<math>= \frac{A}{3-z}+\frac{B}{2-z}</math> <span style="color:green"> (Instructor's comment: You can skip this step.)</span>
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
 
<math>= -\frac{1}{3-z}-\frac{1}{2-z}</math>  
  
<math>= -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}})</math>  
+
<math>= -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}})</math>  <span style="color:green"> (Instructor's comment: Be careful! You do not mean convolution here, do you? Then you should use <math>\times</math> instead of <math>*</math>.)</span>
  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n</math>
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n</math>
Line 188: Line 182:
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k}</math>  
 
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k}</math>  
  
Using the Z transform tables to find the common transformation:
+
Using the Z transform tables to find the common transformation: <span style="color:green"> (Instructor's comment: I don't understand what you mean. You should rephrase this.)</span>
  
 
x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]
 
x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]

Revision as of 05:50, 23 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 2

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get (Instructor's comment: You can skip this explanation and write the expansion directly)

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of (Instructor's comment: No need to explain this.)

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

x[n] = u[ − n]( − 3n − 1 − 2n − 1)

Answer 3

First, using partial fraction we get..

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

A(2-z) + B(3-z) = 1

let z=2, then B=1

let z=3, then A=-1 (Instructor's comment: You do not need to explain how you got the A and the B. )

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $

now let n = -k

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $

by comparison with z-transfrom formula

x[n] = − 3n − 1u[ − n] + 2n − 1u[ − n]

x[n] = ( − 3n − 1 + 2n − 1)u[ − n]


Answer 4

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z} - \frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{k=0}^{+\infty} (\frac{z}{3})^k -\frac{1}{2}\sum_{k=0}^{+\infty} (\frac{z}{2})^k $

$ = \sum_{k=0}^{+\infty}[(-\frac{1}{3})(\frac{1}{3})^k + (-\frac{1}{2})(\frac{1}{2})^k]u[k] * z^k $

Substitute k with -n

$ = \sum_{n=-\infty}^{+\infty}[(-\frac{1}{3})3^{-n} + (-\frac{1}{2})2^{-n}]u[-n] * z^{-n} $

Look up Z transform equation on RHEA table and see that X(z) becomes...

x[n] = ( − 3n − 1 − 2n − 1)u[ − n]


Answer 5

by partical fraction, we get,

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = -\frac{1}{3-z}+\frac{1}{2-z} $

For $ \quad \text{ROC} \quad |z|<2 $

$ X(z)= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $


$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

assume n=-k.

$ X(z)= -\frac{1}{3}\sum_{k=-\infty}^{0} 3^{k} z^{-k} +\frac{1}{2}\sum_{k=-\infty}^{0} 2^{k}z^{-k} $


$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + \frac{1}{2}2^k]z^{-k} $

So, x[n] = (−3n-1+2n-1)u[-n]

Answer 6

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.)

$ = \frac{1}{2-z}-\frac{1}{3-z} $

$ = \frac{1}{2}\frac{1}{1-\frac{z}{2}}-\frac{1}{3}\frac{1}{1-\frac{z}{3}} $

By the geometric series formula,

$ X(z) = \frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n - \frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n $

$ = \sum_{n=0}^{+\infty}(\frac{1}{2}(\frac{1}{2})^n - \frac{1}{3}(\frac{1}{3})^n)z^n $

$ = \sum_{n=-\infty}^{+\infty}u[n]((\frac{1}{2})^{n+1} - (\frac{1}{3})^{n+1})z^n $

Substituting k = -n for n gives,

$ X(z) = \sum_{k=-\infty}^{+\infty}u[-k](\frac{1}{2}^{-k+1} - \frac{1}{3}^{k+1})z^{-k} $

$ = \sum_{k=-\infty}^{+\infty}u[-k](2^{k-1} - 3^{k-1})z^{-k} $

By comparison with the Z-transform formula,

x[n] = u[-n](2n-1-3n-1)

Answer 7

$ X(z) =\frac{1}{(3-z)(2-z)} $

$ = \frac{A}{3-z}+\frac{B}{2-z} $ (Instructor's comment: You can skip this step.) $ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}*(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}*(\frac{1}{1-\frac{z}{2}}) $ (Instructor's comment: Be careful! You do not mean convolution here, do you? Then you should use $ \times $ instead of $ * $.)

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{z}{2})^n $ $ = -\frac{1}{3}\sum_{n=0}^{+\infty}(\frac{1}{3})^n(z)^n -\frac{1}{2}\sum_{n=0}^{+\infty}(\frac{1}{2})^n(z)^n $

substituting k for -n:

$ = -\frac{1}{3}\sum_{n=0}^{+\infty}3^{k} z^{-k}-\frac{1}{2}\sum_{n=0}^{+\infty}2^{k}z^{-k} $

Using the Z transform tables to find the common transformation: (Instructor's comment: I don't understand what you mean. You should rephrase this.)

x[n] = (−3^(n−1))u[−n] - (2^(n−1))u[− n]

Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett