Line 64: Line 64:
  
 
===Answer 3===
 
===Answer 3===
Write it here.
+
By Yeong Ho Lee
 +
 
 +
First, using partial fraction we get..
 +
 
 +
<math> X(z) = \frac{A}{3-z}+\frac{B}{2-z}</math>
 +
 
 +
<math> A(2-z) + B(3-z) = 1
 +
 
 +
<math> let z=2, then B=1
 +
<math> let z=3, then A=-1
 +
 
 +
<math> = -\frac{1}{3-z}+\frac{1}{2-z}</math>
 +
 
 +
<math>= -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}})</math>
 +
 
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n</math>
 +
 
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n</math>
 +
 
 +
now let n = -k
 +
 
 +
<math>= -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k}</math>
 +
 
 +
by comparison with z-transfrom formula
 +
 
 +
<math>x[n]=-3^{n-1}u[-n]+2^{n-1}u[-n]</math>
 +
 
 +
<math>x[n]=(-3^{n-1}+2^{n-1})u[-n]
 
===Answer 4===
 
===Answer 4===
 
Write it here.
 
Write it here.

Revision as of 16:56, 19 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad |z|<2 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

by comparison with z-transform formula

$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $

Answer 2

Kyungjun Kim

Using a partial fraction expansion, we can change the original equation to

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $ Where A = 1, B = -1, so we get

$ = -\frac{1}{3-z}-\frac{1}{2-z} $

By factoring out 1/3 for the first term, and 1/2 for the second term, we can have both terms in form of

$ \frac{1}{1-r} $, which is equal to $ \sum_{n=0}^{+\infty} (\frac{1}{r})^n $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})-\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n -\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = \sum_{n=0}^{+\infty}[(-\frac{1}{3}) (\frac{1}{3})^n + (-\frac{1}{2})(\frac{1}{2})^n]z^n $

Then let k=-n

$ = \sum_{k=-\infty}^{+\infty}u[-k][(-\frac{1}{3})3^k + (-\frac{1}{2})2^k]z^{-k} $

Comparing it with z-transform formula, we can get

$ x[n]=u[-n](-3^{n-1}-2^{n-1}) $

Answer 3

By Yeong Ho Lee

First, using partial fraction we get..

$ X(z) = \frac{A}{3-z}+\frac{B}{2-z} $

$ A(2-z) + B(3-z) = 1 <math> let z=2, then B=1 <math> let z=3, then A=-1 <math> = -\frac{1}{3-z}+\frac{1}{2-z} $

$ = -\frac{1}{3}(\frac{1}{1-\frac{z}{3}})+\frac{1}{2}(\frac{1}{1-\frac{z}{2}}) $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{z}{3})^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{z}{2})^n $

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} (\frac{1}{3})^n(z)^n +\frac{1}{2}\sum_{n=0}^{+\infty} (\frac{1}{2})^n(z)^n $

now let n = -k

$ = -\frac{1}{3}\sum_{n=0}^{+\infty} 3^{k} z^{-k} +\frac{1}{2}\sum_{n=0}^{+\infty} 2^{k}z^{-k} $

by comparison with z-transfrom formula

$ x[n]=-3^{n-1}u[-n]+2^{n-1}u[-n] $

$ x[n]=(-3^{n-1}+2^{n-1})u[-n] ===Answer 4=== Write it here. ---- ---- [[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison