(11 intermediate revisions by 5 users not shown)
Line 4: Line 4:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:z-transform]]
 
[[Category:z-transform]]
 +
[[Category:inverse z-transform]]
  
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
  
= [[:Category:Problem_solving|Practice Question]], [[ECE438]] Fall 2013, [[User:Mboutin|Prof. Boutin]] =
+
Topic: Computing an inverse z-transform
On computing the inverse z-transform of a discrete-time signal.
+
 
 +
</center>
 
----
 
----
 +
==Question==
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
  
Line 19: Line 25:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
Ruofei
=== Answer 2===
+
 
Write it here.
+
<math>X(Z) = \frac{1}{(3-Z) (2-Z)}</math>
 +
 
 +
<math>X(Z) = -\frac{1}{3-Z} + \frac{1}{2-Z} </math>
 +
 
 +
<math>X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} + \frac{1}{Z} \frac{1}{\frac{2}{Z}-1}</math>
 +
 
 +
<math>X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} - \frac{1}{Z} \frac{1}{1-\frac{2}{Z}}</math>
 +
 
 +
Since <math>|2|<Z<|3|</math>
 +
 
 +
<math>\frac{1}{1-\frac{2}{Z}} = \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n}</math>
 +
 
 +
<math>\frac{1}{1-\frac{Z}{3}} = \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n}</math>
 +
 
 +
Thus,
 +
 
 +
<math>X(Z) = -\frac{1}{3} \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n}</math>
 +
 
 +
<math>X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math>
 +
 
 +
<math>X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n}  -\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1}</math>
 +
 
 +
In <math>-\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n}</math>, Let k=-n, then -k=n
 +
 
 +
In <math>\frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n}</math>, Let i=n+1, then n=i-1
 +
 
 +
<math>-\sum_{n=-\infty}^{+\infty} u[n] (\frac{1}{3})^{n+1} Z^{n}-\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1}</math>
 +
 
 +
<math>-\sum_{n=-\infty}^{+\infty} u[-k] (\frac{1}{3})^{-k+1} Z^{-k}-\sum_{n=-\infty}^{+\infty} u[i-1] 2^{i-1} Z^{-i}</math>
 +
 
 +
Therefore, <math>x(n) = -u[-n] 3^{n-1} - u[n-1] 3^{n-1}</math>
 +
 
 +
 
 +
:<span style="color:blue"> Grader's comment: Made a mistake in the last step . It should be 2 instead of 3 </span>
 +
 
 +
 
 +
===Answer 2===
 +
 
 +
Li-Pang Mo
 +
 
 +
<math>X(z) =\frac{1}{(3-z)(2-z)} </math>
 +
 
 +
<math>X(z) =\frac{-1}{3-z} + \frac{1}{2-z} </math>
 +
 
 +
<math>X(z) =(\frac{-1}{3})(\frac{1}{1-\frac{z}{3}}) + (\frac{-1}{z})(\frac{1}{1-\frac{2}{z}}) </math>
 +
 
 +
<math> |2|<Z<|3| </math>, which makes <math> \frac{z}{3}<1, \frac{2}{z}<1 </math>
 +
 
 +
 
 +
 
 +
Use geometric series:
 +
 
 +
<math>X(z) =\frac{-1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=0}^{+\infty} (\frac{2}{z})^{n} </math>
 +
 
 +
<math>X(z) =\frac{-1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{z})^{n} </math>
 +
 
 +
<math>X(z) =\frac{-1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{z})^{n} </math>
 +
 
 +
<math>X(z) = -\sum_{n=-\infty}^{+\infty} u[n] (z)^{n} (\frac{1}{3})^{n+1} - \sum_{n=-\infty}^{+\infty} u[n] (2)^{n} (z)^{-n-1} </math>
 +
 
 +
<math>let p = -n ,  n = -p,  q = n+1 ,  n = q-1 </math>
 +
 
 +
 
 +
<math>X(z) = -\sum_{n=-\infty}^{+\infty} u[-p] (z)^{-p} (\frac{1}{3})^{-p+1} - \sum_{n=-\infty}^{+\infty} u[q-1] (2)^{q-1} (z)^{q-1} </math>
 +
 
 +
By observation:
 +
 
 +
<math>x(n) = -u[-n] (\frac{1}{3})^{-n+1} - u[n-1](2)^{n-1} </math>
 +
 
 +
:<span style="color:blue"> Grader's comment: Answer is Correct </span>
 +
 
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.

Latest revision as of 12:55, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing an inverse z-transform


Question

Compute the inverse z-transform of

$ X(z) =\frac{1}{(3-z)(2-z)}, \quad \text{ROC} \quad 2<|z|<3 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Ruofei

$ X(Z) = \frac{1}{(3-Z) (2-Z)} $

$ X(Z) = -\frac{1}{3-Z} + \frac{1}{2-Z} $

$ X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} + \frac{1}{Z} \frac{1}{\frac{2}{Z}-1} $

$ X(Z) = -\frac{\frac{1}{3}}{1-\frac{Z}{3}} - \frac{1}{Z} \frac{1}{1-\frac{2}{Z}} $

Since $ |2|<Z<|3| $

$ \frac{1}{1-\frac{2}{Z}} = \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n} $

$ \frac{1}{1-\frac{Z}{3}} = \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} $

Thus,

$ X(Z) = -\frac{1}{3} \sum_{n=0}^{+\infty} (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{2}{Z})^{n} $

$ X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} + \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n} $

$ X(Z) = -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} -\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1} $

In $ -\frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{Z}{3})^{n} $, Let k=-n, then -k=n

In $ \frac{-1}{Z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{Z})^{n} $, Let i=n+1, then n=i-1

$ -\sum_{n=-\infty}^{+\infty} u[n] (\frac{1}{3})^{n+1} Z^{n}-\sum_{n=-\infty}^{+\infty} u[n] 2^{n} Z^{-n-1} $

$ -\sum_{n=-\infty}^{+\infty} u[-k] (\frac{1}{3})^{-k+1} Z^{-k}-\sum_{n=-\infty}^{+\infty} u[i-1] 2^{i-1} Z^{-i} $

Therefore, $ x(n) = -u[-n] 3^{n-1} - u[n-1] 3^{n-1} $


Grader's comment: Made a mistake in the last step . It should be 2 instead of 3


Answer 2

Li-Pang Mo

$ X(z) =\frac{1}{(3-z)(2-z)} $

$ X(z) =\frac{-1}{3-z} + \frac{1}{2-z} $

$ X(z) =(\frac{-1}{3})(\frac{1}{1-\frac{z}{3}}) + (\frac{-1}{z})(\frac{1}{1-\frac{2}{z}}) $

$ |2|<Z<|3| $, which makes $ \frac{z}{3}<1, \frac{2}{z}<1 $


Use geometric series:

$ X(z) =\frac{-1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=0}^{+\infty} (\frac{2}{z})^{n} $

$ X(z) =\frac{-1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{z})^{n} $

$ X(z) =\frac{-1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^{n} + \frac{-1}{z} \sum_{n=-\infty}^{+\infty} u[n] (\frac{2}{z})^{n} $

$ X(z) = -\sum_{n=-\infty}^{+\infty} u[n] (z)^{n} (\frac{1}{3})^{n+1} - \sum_{n=-\infty}^{+\infty} u[n] (2)^{n} (z)^{-n-1} $

$ let p = -n , n = -p, q = n+1 , n = q-1 $


$ X(z) = -\sum_{n=-\infty}^{+\infty} u[-p] (z)^{-p} (\frac{1}{3})^{-p+1} - \sum_{n=-\infty}^{+\infty} u[q-1] (2)^{q-1} (z)^{q-1} $

By observation:

$ x(n) = -u[-n] (\frac{1}{3})^{-n+1} - u[n-1](2)^{n-1} $

Grader's comment: Answer is Correct

Answer 3

Write it here.

Answer 4

Write it here.



Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang