(Answer #9 added)
Line 29: Line 29:
  
 
  Therefore, <math> x[n]= -3^{n-1} u[n-1] </math>
 
  Therefore, <math> x[n]= -3^{n-1} u[n-1] </math>
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 2===
 
=== Answer 2===
Line 42: Line 44:
  
 
<math> x[n] = -u[n-1] 3^{n-1} </math>
 
<math> x[n] = -u[n-1] 3^{n-1} </math>
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
===Answer 3===
 
===Answer 3===
Line 56: Line 60:
  
 
<math> x[n] = -u[n-1] 3^{n-1} </math>
 
<math> x[n] = -u[n-1] 3^{n-1} </math>
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
===Answer 4===
 
===Answer 4===
Line 80: Line 86:
 
Therefore, <math>x(n) = -u[n-1] 3^{n-1}</math>
 
Therefore, <math>x(n) = -u[n-1] 3^{n-1}</math>
  
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 5 ===
 
=== Answer 5 ===
Line 87: Line 94:
  
  
<math>X(z) = \frac{1}{-z}* \frac{1} {\frac{3}{-Z}+1} </math>
+
<math>X(z) = \frac{1}{-z}* \frac{1} {\frac{3}{-Z}+1} </math>  :<span style="color:blue"> Grader's comment: Use x instead of convolution symbol </span>
  
 
<math>X(z) = \frac{1}{-z}* \frac{1} {1-\frac{3}{Z}} </math>
 
<math>X(z) = \frac{1}{-z}* \frac{1} {1-\frac{3}{Z}} </math>
Line 104: Line 111:
  
 
<math>x[n] = 3^{n-1} u[n-1] </math>
 
<math>x[n] = 3^{n-1} u[n-1] </math>
 +
 +
:<span style="color:blue"> Grader's comment: Forgot the negative sign </span>
 +
 
----
 
----
 
Answer 6
 
Answer 6
Line 116: Line 126:
 
<math>x[n] = (\frac{1}{3})^{-n+1} u[-n] </math>  
 
<math>x[n] = (\frac{1}{3})^{-n+1} u[-n] </math>  
  
 
+
:<span style="color:blue"> Grader's comment: Wrong approach </span>
 
+
  
  
Line 147: Line 156:
  
 
<math>x[n] = -3^{\left( n-1 \right) } u[n-1]</math>
 
<math>x[n] = -3^{\left( n-1 \right) } u[n-1]</math>
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 5 ===
 
=== Answer 5 ===
Line 170: Line 181:
 
x[n] = -u[n-1]3<sup>n-1</sup>
 
x[n] = -u[n-1]3<sup>n-1</sup>
  
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
  
Line 193: Line 205:
  
 
x[n] = (−3^(n−1))u[n−1]
 
x[n] = (−3^(n−1))u[n−1]
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
--------------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------------

Revision as of 08:34, 30 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|>3 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) =\frac{1}{\frac{3z}{z} - z} = \frac{-1}{z} \frac{1}{1-\frac{3}{z}} $

$       =\frac{-1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^n = \sum_{n=0}^{+\infty} (-z^{-1}) (3z^{-1})^n  $
NOTE: $  (3z^{-1})^n = (3^n) (z^{-n})  $ 
$  = \sum_{n=0}^{+\infty} -3^n z^{-n-1} = \sum_{n=-\infty}^{+\infty} -3^n u[n] z^{-n-1}  $
NOTE: Let k=n+1
$  = \sum_{n=-\infty}^{+\infty} -3^{k-1} u[k-1] z^{-k} $ (compare with $ \sum_{n=-\infty}^{+\infty} x[n] z^{-k} $) 
Therefore, $  x[n]= -3^{n-1} u[n-1]  $
Grader's comment: Correct Answer

Answer 2

$ X(z) = \frac{1}{3-z} = -\frac{1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \sum_{n=-\infty}^{+\infty} -u[n]3^{n}z^{-n-1} $

Let k = n+1, so n = k-1

$ X(z) = \sum_{n=-\infty}^{+\infty} -u[k-1]3^{k-1}z^{-k} $

By comparison with the z-transform equation

$ x[n] = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 3

$ X(z) = \frac{1}{3-z} = -\frac{1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \sum_{n=0}^{+\infty} (-3)^{n}({z})^{-n-1} = \sum_{n=-\infty}^{+\infty} -u[n]3^{n}z^{-(n+1)} $

Let k = n+1 then n = k-1

$ X(z) = \sum_{n=-\infty}^{+\infty} -u[k-1]3^{k-1}z^{-k} $

By comparison,

$ x[n] = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 4

$ X(Z) = \frac{1}{3-Z} $

$ X(Z) = \frac{-1}{Z} \frac{1}{1-\frac{3}{Z}} $

Since,$ |3|<Z $

$ \frac{1}{1-\frac{3}{Z}} = \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

Thus,

$ X(Z) = \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

$ X(Z) = -Z^{-1} \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

$ X(Z) = -\sum_{n=-\infty}^{+\infty} u[n] 3^{n}Z^{-n-1} $

Let k=n+1, then -k=-n-1,n=k-1

$ X(Z) = -\sum_{n=-\infty}^{+\infty} u[k-1] 3^{k-1}Z^{-k} $

Therefore, $ x(n) = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 5

By Yixiang Liu

$ X(z) = \frac{1}{3-Z} $


$ X(z) = \frac{1}{-z}* \frac{1} {\frac{3}{-Z}+1} $  : Grader's comment: Use x instead of convolution symbol

$ X(z) = \frac{1}{-z}* \frac{1} {1-\frac{3}{Z}} $

$ X(z) = \frac{1}{-Z} \sum_{n=0}^{+\infty} (\frac{3}{3})^n $

$ X(z) = \sum_{n=0}^{+\infty} 3^{n} Z^{-n-1} $

$ X(z) = \sum_{-\infty}^{+\infty} u[n] 3^{n} Z^{-n-1} $

Let -k = -n-1, so n = k-1

$ X(z) = \sum_{-\infty}^{+\infty} u[k-1] 3^{k-1} Z^{-k} $

By comparison with the x-transform formula

$ x[n] = 3^{n-1} u[n-1] $

Grader's comment: Forgot the negative sign

Answer 6

$ X(z) = \frac{1}{3-z} $

we have |z| > 3,

$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $


$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $

Grader's comment: Wrong approach



Answer 7


$ X(z) = \frac{1}{3-z} $

$ X(z) = \frac{1}{\frac{3}{z} z -z} $

$ X(z) = \frac{1}{z} \frac{1}{\frac{3}{z} - 1} $

$ X(z) = \frac{-1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{-1}{z} \frac{1-\left( \frac{3}{z} \right) ^{n}}{1-\frac{3}{z}}, \quad \text{As n goes to} \quad \infty \text{ since ROC} \quad |z|>3 $

$ X(z) = \frac{-1}{z} \sum_{n=0}^{\infty} \left( \frac{3}{z} \right)^{n} $

$ X(z) = \frac{-1}{z} \sum_{n=0}^{\infty} 3^n z^{-n} $

$ X(z) = -\sum_{n=0}^{\infty} 3^n z^{-\left(n+1 \right)}, \quad \text{Replace n+1 with k} $

$ X(z) = -\sum_{k=1}^{\infty} 3^{k-1} z^{-k} $

$ X(z) = -\sum_{-\infty}^{\infty} 3^{k-1} u[k-1] z^{-k}, \quad \text{By comparing with DTFT equation we get} $

$ x[n] = -3^{\left( n-1 \right) } u[n-1] $

Grader's comment: Correct Answer

Answer 5

$ X(z) = \frac{1}{\frac{3z}{z}-z} $

$ = -(\frac{1}{z})(\frac{1}{1-\frac{3}{z}}) $

Using the geometric series formula,

$ = -(\frac{1}{z})\sum_{n=0}^{\infty}(\frac{3}{z})^n $

$ = -(\frac{1}{z})\sum_{n=0}^{\infty}3^nz^{-n} $

$ = \sum_{n=-\infty}^{\infty}-u[n]3^nz^{-n-1} $

Let k = n+1,

$ = \sum_{k=-\infty}^{\infty}-u[k-1]3^{k-1}z^{-k} $

By comparison with the Z-transform formula,

x[n] = -u[n-1]3n-1

Grader's comment: Correct Answer


Answer 9

$ X(z)=\frac{1}{3-Z} $

$ = \frac{-1}{z}*\frac{1}{1-\frac{3}{z}} $

$ = \frac{-1}{z}\sum_{n=0}^{\infty}(\frac{3}{z})^n $

$ = \sum_{n=0}^{\infty}(-z^{-1})(3z^{-1})^n $

$ = \sum_{n=0}^{\infty}-3^n z^{-n-1} $

$ = \sum_{n=-\infty}^{\infty}-3^n u[n] z^{-n-1} $

substituting n+1 with k:

$ = \sum_{n=-\infty}^{\infty}-u[k-1]3^{k-1}z^{-k} $

Comparing to common Z-transform tables:

x[n] = (−3^(n−1))u[n−1]

Grader's comment: Correct Answer


Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood