Line 34: Line 34:
  
 
Therefore, <span class="texhtml">''x''[''n''] = 3<sup> − 1 + ''n''</sup>''u''[ − ''n'']</span>  
 
Therefore, <span class="texhtml">''x''[''n''] = 3<sup> − 1 + ''n''</sup>''u''[ − ''n'']</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
 +
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Line 48: Line 51:
  
 
<span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 
<span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
 +
  
 
=== Answer 3  ===
 
=== Answer 3  ===
Line 62: Line 68:
  
 
Using the z-transform formula, <span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 
Using the z-transform formula, <span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 4  ===
 
=== Answer 4  ===
Line 86: Line 94:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 5  ===
 
=== Answer 5  ===
Line 114: Line 124:
  
 
<span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 
<span class="texhtml">''x''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
----
 
----
Line 138: Line 150:
  
 
<span class="texhtml">''X''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 
<span class="texhtml">''X''[''n''] = 3<sup>''n'' − 1</sup>''u''[ − ''n'']</span>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
----
 
----
Line 158: Line 172:
  
 
<math>x[n] = \left( \frac{1}{3} \right) ^{-n+1}  u[-n]</math>  
 
<math>x[n] = \left( \frac{1}{3} \right) ^{-n+1}  u[-n]</math>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
----
 
----
Line 180: Line 196:
  
 
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] &lt;/math&gt;  
 
[[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] &lt;/math&gt;  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
----
 
----
Line 212: Line 230:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 9  ===
 
=== Answer 9  ===
Line 230: Line 250:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 10  ===
 
=== Answer 10  ===
Line 252: Line 274:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
=== Answer 11<br>  ===
 
=== Answer 11<br>  ===
 +
  
 
<math>X(z) =\frac{1}{3-z} </math> <math>X(z) =(\frac{1}{3}) \frac{1}{1-\frac{z}{3}} </math>  
 
<math>X(z) =\frac{1}{3-z} </math> <math>X(z) =(\frac{1}{3}) \frac{1}{1-\frac{z}{3}} </math>  
Line 270: Line 295:
  
 
<br>  
 
<br>  
 +
 +
:<span style="color:blue"> Grader's comment: Correct Answer </span>
  
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]]
 
[[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] [[Category:Inverse_z-transform]]

Revision as of 08:27, 30 September 2013


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|<3 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X[z] = \sum_{n=0}^{+\infty} 3^{-1-n} z^{n} $

$       = \sum_{n=-\infty}^{+\infty} u[n] 3^{-1-n} z^{n} $
NOTE: Let n=-k

$ = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k} $ (compare with $ \sum_{n=-\infty}^{+\infty} x[n] z^{-k} $)

$ = \sum_{n=-\infty}^{+\infty} u[-k] 3^{-1+k} z^{-k} $

Therefore, x[n] = 3 − 1 + nu[ − n]

Grader's comment: Correct Answer


Answer 2

$ X(z) = \frac{1}{3-z} = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n] (\frac{z}{3})^n $

Let n = -k

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[-k]3^{k}z^{-k} $

By comparison with the x-transform formula,

x[n] = 3n − 1u[ − n]

Grader's comment: Correct Answer


Answer 3

By Yeong Ho Lee

$ X[z] = \sum_{n=0}^{\infty}z^{n}3^{-n-1} $

$ = \sum_{n=-\infty}^{+\infty} 3^{-n-1}z^{n}u[n] $

Now, let n = -k

$ = \sum_{n=-\infty}^{+\infty} 3^{k-1}z^{-k}u[-k] $

Using the z-transform formula, x[n] = 3n − 1u[ − n]

Grader's comment: Correct Answer

Answer 4

Gena Xie

$ X(z) = \frac{1}{3-Z} $

since |z|<3,

|z|/3 < 1

$ X(z) = \frac{1}{3} \frac{1} { 1-\frac{Z}{3}} $

$ X(z) = \frac{1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^n = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n](\frac{z}{3})^n $

substitute n by -n,

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[-n](\frac{z}{3})^{-n} = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[-n](\frac{1}{3})^{-n} Z^{-n} $

based on the definition

$ x[n] = \frac{1}{3} u[-n](\frac{1}{3})^{-n} = (\frac{1}{3})^{-n+1} u[-n] $


Grader's comment: Correct Answer

Answer 5

By Yixiang Liu

$ X(z) = \frac{1}{3-Z} $


$ X(z) = \frac{\frac{1}{3}} { 1-\frac{Z}{3}} $

$ X(z) = \frac{1}{3} * \frac{1} { 1-\frac{Z}{3}} $

by geometric series

$ X(z) = \frac{1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^n $

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n](\frac{z}{3})^n $

$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{z}{3})^{-k} $

$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{1}{3})^{-k} Z^{-k} $

By comparison with the x-transform formula

$ x[n] = \frac{1}{3} u[-n](\frac{1}{3})^{-n} $

$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $

x[n] = 3n − 1u[ − n]

Grader's comment: Correct Answer

Answer 6 - Ryan Atwell

$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|<3 $

$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $

$ X(z) = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{z}{3})^{n} $

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{\infty} u[n](\frac{z}{3})^{n} $

n=-k


$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k](\frac{z}{3})^{-k} $

$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k]{3}^{k}{z}^{-k} $


$ X(z) = \sum_{k=-\infty}^{\infty} u[-k]{3}^{k-1}{z}^{-k} $

by formula

X[n] = 3n − 1u[ − n]

Grader's comment: Correct Answer

Answer 7

$ X(z) = \frac{1}{3-z} $

$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $

$ X(z) = \frac{1}{3} \frac{1-\left( \frac{z}{3} \right) ^n}{1- \frac{z}{3}} $ $ , \quad \text{As n goes to} \quad \infty \quad \text{since} \quad |z|<3 $

$ X(z) = \frac{1}{3} \sum_{n=0}^{\infty} \left( \frac{z}{3} \right)^n $

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{0} \left( \frac{1}{3} \right)^{-n} z^{-n} $

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{\infty} \left(\frac{1}{3} \right)^{-n} u[-n] z^{-n} $ $ , \quad \text{By comparing with DTFT equation, we get} \quad $

$ x[n] = \frac{1}{3} * \frac{1}{3}^{-n} u[-n] $

$ x[n] = \left( \frac{1}{3} \right) ^{-n+1} u[-n] $

Grader's comment: Correct Answer

Answer 8

$ X(z) = \frac{1}{3-z} $

$ =\frac{1}{3}\frac{1}{1-\frac{z}{3}} $

$ \frac{1}{3}\sum_{n=-\infty}^{\infty} u[n](\frac{z}{3})^n $

let n=-k

$ X(z)=\frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k]3^k z^{-k} $

by comparison to inverse z-transform formula,

x[n] = 3 − 1 + ku[ − k]


Back to ECE438 Fall 2013 Prof. Boutin </math>

Grader's comment: Correct Answer

Answer 8

$ X(z) = \frac{1}{3-z} $

we have |z| < 3, so

$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $

sum will look like this:

$ X(z) = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{z}{3})^{n} $

with unit step:

$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{\infty} u[n](\frac{z}{3})^{n} $

substituting n with -k we get:

$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{\infty} u[-k](\frac{z}{3})^{-k} $


finally we get:

$ X(z) = \sum_{k=-\infty}^{\infty} u[-k]{3}^{k-1}{z}^{-k} $

using the formula we get:

$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $


Grader's comment: Correct Answer

Answer 9

$ X(z) = \frac{(\frac{1}{3})}{1-(\frac{z}{3})} $


$ X(z) = (\frac{1}{3})*\sum_{n=0}^{\infty} \frac{1}{1-(\frac{z}{3})} $


$ X(z) = (\frac{1}{3})*\sum_{n=-\infty}^{\infty} u[n] (\frac{z}{3})^{n} $


let -k = n,


$ X(z) = (\frac{1}{3})*\sum_{n=-\infty}^{\infty} u[-k] (\frac{z}{3})^{-k} $


$ X(Z) = (\frac{1}{3})*\sum_{n=-\infty}^{\infty} u[n] (\frac{1}{3})^{-k}* Z^{-k} $


so by comparison $ , x[n] = (\frac{1}{3})^{-n+1} u[-n] $


Grader's comment: Correct Answer

Answer 10

$ X(z) =\frac{1}{3-z} $.

$ X(z) =(\frac{1}{3}) \frac{1}{1-\frac{z}{3}} $

Since z/3 < |1|, base on geometric series:

$ \frac{1}{1-\frac{z}{3}} = \sum_{n=0}^{\infty} (\frac{z}{3})^{n} $

$ X(z) =(\frac{1}{3}) \sum_{n=0}^{\infty} (\frac{z}{3})^{n} = \sum_{n=0}^{\infty} z^{n} (\frac{1}{3})^{n+1} $

$ X(z) =\sum_{n=-\infty}^{\infty} u[n] z^{n} (\frac{1}{3})^{n+1} $

Let n = -m, $ X(z) =\sum_{-m=-\infty}^{\infty} u[-m] z^{-m} (\frac{1}{3})^{-m+1} $

$ X(z) =\sum_{m=-\infty}^{\infty} {z}^{-m} u[-m]{3}^{m-1} $

base on observation: x[n] = u[ − n]3n − 1


Grader's comment: Correct Answer

Answer 11

$ X(z) =\frac{1}{3-z} $ $ X(z) =(\frac{1}{3}) \frac{1}{1-\frac{z}{3}} $

for $ \quad \text{ROC} \quad |z|<3 $

we can use geometric series

$ X(z) = \frac{1}{3} \sum_{n=0}^{+\infty} (\frac{z}{3})^n $
$ X(z) = \frac{1}{3} \sum_{n=-\infty}^{+\infty} u[n](\frac{z}{3})^n $

$ X(z) = \frac{1}{3} \sum_{k=-\infty}^{+\infty} u[-k](\frac{1}{3})^{-k} Z^{-k} $

so, by comparing to z-transform formula,we have


$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $


Grader's comment: Correct Answer

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett