(One intermediate revision by one other user not shown)
Line 1: Line 1:
[[Category:ECE302]]
+
<br>
[[Category:ECE302Spring2013Boutin]]
+
[[Category:Problem_solving]]
+
[[Category:probability]]
+
[[Category:discrete_random_variable]]
+
[[Category:characteristic_function]]
+
  
 
= [[:Category:Problem solving|Practice Problem]]: Obtain the moment generating function for an exponential random variable  =
 
= [[:Category:Problem solving|Practice Problem]]: Obtain the moment generating function for an exponential random variable  =
Line 10: Line 5:
 
----
 
----
  
Let X be an exponential random variable. Recall that the pdf of an exponential random variable is given by
+
Let X be an exponential random variable. Recall that the pdf of an exponential random variable is given by  
  
 +
<br> <math>\ f_X(x)= \lambda e^{-\lambda x}, \text{ for }x\geq 0 . </math>
  
<math>\ f_X(x)= \lambda e^{-\lambda x}, \text{ for }x\geq 0 . </math>  
+
Obtain the moment generating function <span class="texhtml">''M''<sub>''X''</sub>(''s'')</span> of X.
  
Obtain the moment generating function <math>M_X(s)</math> of X.
 
 
----
 
----
  
Line 25: Line 20:
  
 
=== Answer 1  ===
 
=== Answer 1  ===
Hint:
+
 
:<math>M_X(s)=E[e^{sX}] = \int e^{sx} f_{X}(x)dx</math>
+
Hint:  
: get an answer for <math>s < \lambda </math>
+
 
: note that the integrating range of x starts from 0
+
:<math>M_X(s)=E[e^{sX}] = \int e^{sx} f_{X}(x)dx</math>  
 +
:get an answer for <span class="texhtml">''s'' &lt; λ</span>  
 +
:note that the integrating range of x starts from 0
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
 
  
 +
:<math>M_X(jw) = E[e^{jwx}]</math>
 +
:<math>E[e^{jwx}] = \int e^{jwx} f_{X}(x)dx \text{ For } x \geq 0 </math>
 +
:<math>M_X(jw) = \int_{0}^{\infty} e^{jwx} \lambda e^{-\lambda x}dx</math>
 +
:<math>M_X(jw) = \lambda \int_{0}^{\infty} e^{jwx} e^{-\lambda x}dx</math>
 +
:<math>M_X(jw) = \lambda \int_{0}^{\infty} e^{(jw-\lambda)x}dx</math>
 +
:<math>M_X(jw) = \lambda \int_{0}^{\infty} e^{-(\lambda-jw)x}dx</math>
 +
:<math>M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-(\lambda-jw)\infty}-e^{-(\lambda-jw)0})</math>
 +
:<math>M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-\infty}-e^{0})</math>
 +
:<math>M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(0-1)</math>
 +
:<math>M_X(jw) = \frac {\lambda}{\lambda-jw}</math>
 +
:<math>M_X(s) = \frac {\lambda}{\lambda-s}</math>
 +
<br>
 +
:<span style="color:green"> Instructor's comment: Be careful. In general, you can't obtain the Laplace transform by simply replacing <math>j\omega</math> by s. In fact, the corresponding integral for s diverges for some values of s. -pm  </span>
 
=== Answer 3  ===
 
=== Answer 3  ===
 +
 
Write it here.  
 
Write it here.  
 +
 
----
 
----
  
 
[[2013 Spring ECE 302 Boutin|Back to ECE302 Spring 2013 Prof. Boutin]]  
 
[[2013 Spring ECE 302 Boutin|Back to ECE302 Spring 2013 Prof. Boutin]]  
  
'''[[ECE302|Back to ECE302]]'''
+
'''[[ECE302|Back to ECE302]]'''  
 +
 
 +
[[Category:ECE302]] [[Category:ECE302Spring2013Boutin]] [[Category:Problem_solving]] [[Category:Probability]] [[Category:Discrete_random_variable]] [[Category:Characteristic_function]]

Latest revision as of 13:00, 27 March 2013


Practice Problem: Obtain the moment generating function for an exponential random variable


Let X be an exponential random variable. Recall that the pdf of an exponential random variable is given by


$ \ f_X(x)= \lambda e^{-\lambda x}, \text{ for }x\geq 0 . $

Obtain the moment generating function MX(s) of X.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Hint:

$ M_X(s)=E[e^{sX}] = \int e^{sx} f_{X}(x)dx $
get an answer for s < λ
note that the integrating range of x starts from 0

Answer 2

$ M_X(jw) = E[e^{jwx}] $
$ E[e^{jwx}] = \int e^{jwx} f_{X}(x)dx \text{ For } x \geq 0 $
$ M_X(jw) = \int_{0}^{\infty} e^{jwx} \lambda e^{-\lambda x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{jwx} e^{-\lambda x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{(jw-\lambda)x}dx $
$ M_X(jw) = \lambda \int_{0}^{\infty} e^{-(\lambda-jw)x}dx $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-(\lambda-jw)\infty}-e^{-(\lambda-jw)0}) $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(e^{-\infty}-e^{0}) $
$ M_X(jw) = \lambda \frac {1}{-(\lambda-jw)}(0-1) $
$ M_X(jw) = \frac {\lambda}{\lambda-jw} $
$ M_X(s) = \frac {\lambda}{\lambda-s} $


Instructor's comment: Be careful. In general, you can't obtain the Laplace transform by simply replacing $ j\omega $ by s. In fact, the corresponding integral for s diverges for some values of s. -pm

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett