(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Practice Question 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
Filter Design
+
  
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 +
Topic: Filter Design
 +
 +
</center>
 +
([[:Category:Problem_solving|Practice Question]] 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] )
 
----
 
----
 +
==Question==
 
Define a two-pole band-pass filter such that
 
Define a two-pole band-pass filter such that
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
Line 13: Line 21:
 
* Transfer function
 
* Transfer function
  
<math>H(z) = \frac{1}{(1-p_1p^{-1})(1-p_2p^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.}</math>
+
<math>H(z) = \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.}</math>
  
 
In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:
 
In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:
Line 23: Line 31:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
H(z) &= \frac{1}{(1-p_1p^{-1})(1-p_2p^{-1})} \\
+
H(z) &= \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})} \\
&= \frac{1}{(1-re^{j\theta}p^{-1})(1-re^{-j\theta}p^{-1})} \\
+
&= \frac{1}{(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})} \\
&= \frac{1}{1-2rcos(\theta)p^{-1}+r^2p^{-2}}
+
&= \frac{1}{1-2rcos(\theta)z^{-1}+r^2z^{-2}}
 
\end{align}</math>
 
\end{align}</math>
  
Line 34: Line 42:
 
Constant input gain is zero.
 
Constant input gain is zero.
  
<math>H(e^{j\omega})|_{\omega=0} = \frac{1}{1-2rcos(\theta)+r^2} = 0</math>(*)
+
<math>H(e^{j\omega})|_{\omega=\frac{\pi}{2}} = \frac{1}{1-2rcos(\theta)+r^2} = 1</math>(*)
  
 
Filter has zero frequency response at <math>\omega = 0,\pi</math>
 
Filter has zero frequency response at <math>\omega = 0,\pi</math>
Line 50: Line 58:
 
----
 
----
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_6_ECE438F10|Next practice problem]]
 
  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
  
 
[[Category:2010_Fall_ECE_438_Boutin]]
 
[[Category:2010_Fall_ECE_438_Boutin]]

Latest revision as of 13:00, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Filter Design

(Practice Question 5, ECE438 Fall 2010, Prof. Boutin )


Question

Define a two-pole band-pass filter such that

  1. The center of its band-pass is at $ \omega=\pi/2 $.
  2. There is no gain at the center of its band-pass
  3. The filter has a zero frequency response at $ \omega=0 $ and $ \omega=\pi $.

Express the system using a constant coefficient difference equation.


Post Your answer/questions below.

  • Transfer function

$ H(z) = \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.} $

In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:

  • $ p_1 = re^{j\theta} $
  • $ p_2 = re^{-j\theta} $

So

$ \begin{align} H(z) &= \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})} \\ &= \frac{1}{(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})} \\ &= \frac{1}{1-2rcos(\theta)z^{-1}+r^2z^{-2}} \end{align} $

Then the frequency response of the filter is

$ H(e^{j\omega}) = \frac{1}{1-2rcos(\theta)e^{-j\omega}+r^2e^{-j2\omega}} $

Constant input gain is zero.

$ H(e^{j\omega})|_{\omega=\frac{\pi}{2}} = \frac{1}{1-2rcos(\theta)+r^2} = 1 $(*)

Filter has zero frequency response at $ \omega = 0,\pi $

$ H(e^{j\omega})|_{\omega=0} = \frac{1}{1-2rcos(\theta)+r^2} = 0 $

$ H(e^{j\omega})|_{\omega=\pi} = \frac{1}{1+2rcos(\theta)-r^2} = 0 $

I am unsure if this is correct way to tackle this problem. I don't wish to continue until the posted steps have been verified. Thanks!


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett