(New page: = Practice Question 5, ECE438 Fall 2010, Prof. Boutin = Filter Design ---- Define a two-pole band-pass filter such that #The center of its band-pass is at <math>\omeg...)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Practice Question 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
Filter Design
+
  
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 +
Topic: Filter Design
 +
 +
</center>
 +
([[:Category:Problem_solving|Practice Question]] 5, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] )
 
----
 
----
 +
==Question==
 
Define a two-pole band-pass filter such that
 
Define a two-pole band-pass filter such that
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
 
#The center of its band-pass is at <math>\omega=\pi/2 </math>.
Line 10: Line 18:
 
----
 
----
 
Post Your answer/questions below.
 
Post Your answer/questions below.
*Answer/question
+
 
 +
* Transfer function
 +
 
 +
<math>H(z) = \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.}</math>
 +
 
 +
In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:
 +
*<math>p_1 = re^{j\theta}</math>
 +
*<math>p_2 = re^{-j\theta}</math>
 +
 
 +
So
 +
 
 +
<math>
 +
\begin{align}
 +
H(z) &= \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})} \\
 +
&= \frac{1}{(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})} \\
 +
&= \frac{1}{1-2rcos(\theta)z^{-1}+r^2z^{-2}}
 +
\end{align}</math>
 +
 
 +
Then the frequency response of the filter is
 +
 
 +
<math>H(e^{j\omega}) = \frac{1}{1-2rcos(\theta)e^{-j\omega}+r^2e^{-j2\omega}}</math>
 +
 
 +
Constant input gain is zero.
 +
 
 +
<math>H(e^{j\omega})|_{\omega=\frac{\pi}{2}} = \frac{1}{1-2rcos(\theta)+r^2} = 1</math>(*)
 +
 
 +
Filter has zero frequency response at <math>\omega = 0,\pi</math>
 +
 
 +
<math>H(e^{j\omega})|_{\omega=0} = \frac{1}{1-2rcos(\theta)+r^2} = 0</math>
 +
 
 +
<math>H(e^{j\omega})|_{\omega=\pi} = \frac{1}{1+2rcos(\theta)-r^2} = 0</math>
 +
 
 +
I am unsure if this is correct way to tackle this problem. I don't wish to continue until the posted steps have been verified. Thanks!
 +
 
 +
----
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question
Line 16: Line 58:
 
----
 
----
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_4_ECE438F10|Previous practice problem]]
 
[[Practice_Question_6_ECE438F10|Next practice problem]]
 
  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
  
 
[[Category:2010_Fall_ECE_438_Boutin]]
 
[[Category:2010_Fall_ECE_438_Boutin]]

Latest revision as of 13:00, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Filter Design

(Practice Question 5, ECE438 Fall 2010, Prof. Boutin )


Question

Define a two-pole band-pass filter such that

  1. The center of its band-pass is at $ \omega=\pi/2 $.
  2. There is no gain at the center of its band-pass
  3. The filter has a zero frequency response at $ \omega=0 $ and $ \omega=\pi $.

Express the system using a constant coefficient difference equation.


Post Your answer/questions below.

  • Transfer function

$ H(z) = \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})}, \text{where } p_1 \text{and } p_2 \text{ are poles of the filter.} $

In order for the filter's impulse response to be real-valued, the two poles must be complex conjugates. So we assume that:

  • $ p_1 = re^{j\theta} $
  • $ p_2 = re^{-j\theta} $

So

$ \begin{align} H(z) &= \frac{1}{(1-p_1z^{-1})(1-p_2z^{-1})} \\ &= \frac{1}{(1-re^{j\theta}z^{-1})(1-re^{-j\theta}z^{-1})} \\ &= \frac{1}{1-2rcos(\theta)z^{-1}+r^2z^{-2}} \end{align} $

Then the frequency response of the filter is

$ H(e^{j\omega}) = \frac{1}{1-2rcos(\theta)e^{-j\omega}+r^2e^{-j2\omega}} $

Constant input gain is zero.

$ H(e^{j\omega})|_{\omega=\frac{\pi}{2}} = \frac{1}{1-2rcos(\theta)+r^2} = 1 $(*)

Filter has zero frequency response at $ \omega = 0,\pi $

$ H(e^{j\omega})|_{\omega=0} = \frac{1}{1-2rcos(\theta)+r^2} = 0 $

$ H(e^{j\omega})|_{\omega=\pi} = \frac{1}{1+2rcos(\theta)-r^2} = 0 $

I am unsure if this is correct way to tackle this problem. I don't wish to continue until the posted steps have been verified. Thanks!


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood