Revision as of 06:57, 24 April 2012 by Lrprice (Talk | contribs)

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Power Series Formulas
Series in symbolic forms
$ \text{Taylor Series in one variable } = \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n} $
$ \text{Taylor Series in} d \text{ variables } =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\! $
Taylor Series of certain functions
$ \text{Exponential } e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, \text{ for all } x\in {\mathbb C}\ $
$ \text{Logarithm } ln(1+x) = \sum^{\infin}_{n=1} (-1)^{n+1}\frac{x^n}n,\text{ when }-1<x\le1 $
Geometric Series and related series
(info) $ \text{Finite Geometric Series Formula } \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
(info) $ \text{Infinite Geometric Series Formula } \sum_{k=0}^\infty x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
$ \frac{x^m}{1-x} = \sum^{\infin}_{n=m} x^n\quad\mbox{ for }|x| < 1 \text{ and } m\in\mathbb{N}_0\! $
$ \frac{x}{(1-x)^2} = \sum^{\infin}_{n=1}n x^n\quad\text{ for }|x| < 1\! $
Taylor series of Single Variable Functions
$ \,f(x) \ = \ f(a) \ + \ f'(a)(x \ - \ a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n \, $
$ \text{Rest of Lagrange } \qquad R_n = \frac {f^{(n)}(\zeta)(x-a)^n}{n!} $
$ \text{Rest of Cauchy } \qquad R_n = \frac {f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!} $
Binomial Series
$ \begin{align} (a+x)^n & = a^n + na^{n-1}x + \frac {n(n-1)}{2!} a^{n-2}x^2 + \frac {n(n-1)(n-2)}{3!} a^{n-3}x^3 + \cdot \cdot \cdot \\ & = a^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \binom{n}{3} a^{n-3}x^3 + \cdot \cdot \cdot \\ \end{align} $
$ \text{Some particular Cases: } $
$ (a+x)^2 \ = \ a^2 \ + \ 2ax \ + \ x^2 $
$ (a+x)^3 \ = \ a^3 \ + \ 3a^2x \ + \ 3ax^2 \ + \ x^3 $
$ (a+x)^4 \ = \ a^4 \ + \ 4a^3x \ + \ 6a^2x^2 \ + \ 4ax^3 \ + \ x^4 $
$ (a+x)^{-1} \ = \ 1 \ - \ x \ + \ x^2 \ - \ x^3 \ + \ x^4 \ - \ \cdots $ $ -1 < x < 1 \qquad $
$ (a+x)^{-2} \ = \ 1 \ - \ 2x \ + \ 3x^2 \ - \ 4x^3 \ + \ 5x^4 \ - \ \cdots $ $ -1 < x < 1 \qquad $
$ (a+x)^{-3} \ = \ 1 \ - \ 3x \ + \ 6x^2 \ - \ 10x^3 \ + \ 15x^4 \ - \ \cdots $ $ -1 < x < 1 \qquad $
$ (a+x)^{-1/2} \ = \ 1 \ - \ \frac{1}{2}x \ + \ \frac{1 \cdot 3}{2 \cdot 4}x^2 \ - \ \frac {1 \cdot 3 \cdot 5 }{2 \cdot 4 \cdot 6} x^3 \ + \ \cdots $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{1/2} \ = \ 1 \ + \ \frac{1}{2}x \ - \ \frac{1 }{2 \cdot\ 4}x^2 \ + \ \frac {1 \cdot 3}{2 \cdot 4 \cdot 6} x^3 \ - \ \cdots $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{-1/3} \ = \ 1 \ - \ \frac{1}{3}x \ + \ \frac{1 \cdot 4}{3 \cdot 6}x^2 \ - \ \frac {1 \cdot 4 \cdot 7 }{3 \cdot 6 \cdot 9} x^3 \ + \ \cdots $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{1/3} \ = \ 1 \ + \ \frac{1}{3}x \ - \ \frac{2}{3 \cdot 6}x^2 \ + \ \frac {2 \cdot 5 }{3 \cdot 6 \cdot 9} x^3 \ - \ \cdots $ $ -1 < x \leqq 1 \qquad $
Series Expansion of Exponential functions and Logarithms
$ e^x \ = \ 1 \ + \ x \ + \ \frac{x^2}{2!} \ + \ \frac{x^3}{3!} \ + \ \cdots $ $ - \infty < x < \infty \qquad $
$ a^x \ = \ e^{x \ln a} \ = \ 1 \ + \ x \ln a \ + \ \frac{(x \ln a)^2}{2!} \ + \ \frac{(x \ln a)^3}{3!} \ + \ \cdots $ $ - \infty < x < \infty \qquad $
$ \ln(1+x) \ = \ x \ - \ \frac{x^2}{2} \ + \ \frac{x^3}{3} \ - \ \frac{x^4}{4} \ + \ \cdots $ $ -1 < x \leqq 1 \qquad $
$ \frac{1}{2} \ln \left ( \frac {1+x}{1-x} \right ) \ = \ x \ + \ \frac{x^3}{3} \ + \ \frac {x^5}{5} \ + \ \frac{x^7}{7} \ + \ \cdots \ $ $ -1 < x < 1 \qquad $
$ \ln x \ = \ 2 \left \{ \left ( \frac {x-1}{x+1} \right ) \ + \ \frac{1}{3} \left ( \frac {x-1}{x+1} \right ) ^3 \ + \ \frac{1}{5} \left ( \frac{x-1}{x+1} \right ) ^ 5 \ + \ \cdots \ \right \} $ $ x > 0 \qquad $
$ \ln x \ = \ \left ( \frac {x-1}{x} \right ) \ + \ \frac{1}{2} \left ( \frac {x-1}{x} \right ) ^2 \ + \ \frac{1}{3} \left ( \frac{x-1}{x} \right ) ^ 3 \ + \ \cdots \ $ $ x \geqq \frac {1}{2} \qquad $
Series Expansion of Circular functions
$ \sin x \ = \ x \ - \ \frac{x^3}{3!} \ + \ \frac{x^5}{5!} \ - \ \frac{x^7}{7!} \ + \ \cdots $ $ - \infty < x < \infty $
$ \cos x \ = \ 1 \ - \ \frac{x^2}{2!} \ + \ \frac{x^4}{4!} \ - \ \frac{x6}{6!} \ + \ \cdots $ $ - \infty < x < \infty $
$ \cot x \ = \ \frac{1}{x} \ - \ \frac {x}{3} \ - \ \frac{x^3}{45} \ - \ \frac{2x^5}{945} \ - \ \cdots \ - \ \frac{2^{2n}B_n x^{2n-1}}{(2n)!} \ - \ \cdots $ $ 0 < \left \vert x \right \vert < \pi \qquad $
$ \frac{1}{\cos x} \ = \ 1 \ + \ \frac {x^2}{2} \ + \ \frac{x^4}{24} \ + \ \frac{61x^6}{720} \ + \ \cdots \ - \ \frac{E_n x^{2n}}{(2n)!} \ + \ \cdots $ $ \left \vert x \right \vert < \frac {\pi}{2} \qquad $
$ \frac{1}{\sin x} \ = \ \frac{1}{x} \ + \ \frac {x}{6} \ + \ \frac{7x^3}{360} \ + \ \frac{31x^5}{15120} \ + \ \cdots \ + \ \frac{2(2^{2n-1}-1)B_n x^{2n-1}}{(2n)!} \ + \ \cdots $ $ 0 < \left \vert x \right \vert < \pi \qquad $
$ \arcsin x = x + {1 \over 2}{x^3 \over 3} + \frac{1 \cdot 3}{ 2 \cdot 4} {x^5 \over 5} + \frac {1 \cdot 3 \cdot 5}{ 2 \cdot 4 \cdot 6}{x^7 \over 7} + \cdots $ $ \left \vert x \right \vert < 1 \qquad $
$ \arccos x = {\pi \over 2} - \sin ^{-1} x = {\pi \over 2} - \left ( x + {1 \over 2}{x^3 \over 3} +\frac{1 \cdot 3}{2 \cdot 4} {x^5 \over 5} + \cdots \ \right ) $ $ \left \vert x \right \vert < 1 \qquad $
$ \arctan x = \begin{cases} x - {x^3 \over 3} + {x^5 \over 5} - { x^7 \over 7} + \cdots, & \left \vert x \right \vert < 1 \\ {\pi \over 2} - {1 \over x} + {1 \over 3x^3} - {1 \over 5x^5} + \cdots, &\mbox{ if } x \geqq 1 \\ -{\pi \over 2} - {1 \over x} + {1 \over 3x^3} - {1 \over 5x^5} + \cdots, &\mbox{ if } x \leqq -1 \end{cases} $
$ \arccot x = {\pi \over 2} - \arctan x = \begin{cases} {\pi \over 2} - \left ( x - {x^3 \over 3} + {x^5 \over 5} - \cdots \right ), &\left \vert x \right \vert < 1 \\ {\pi} + {1 \over x} - {1 \over 3x^3} + {1 \over 5x^5} - \cdots, & \mbox{ if } x > 1\\ -{\pi} + {1 \over x} - {1 \over 3x^3} + {1 \over 5x^5} - \cdots, & \mbox{ if } x < -1 \end{cases} $
$ \arccos ({1 \over x}) = {\pi \over 2} - \left ( {1 \over x} + \frac{1}{2 \cdot 3 x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 x^5} + \cdots \right ) $ $ \left \vert x \right \vert > 1 \qquad $
$ \arcsin ({1 \over x}) = {1 \over x} + {1 \over 2 \cdot 3 x^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 x^5} + \cdots $ $ \left \vert x \right \vert > 1 $
Series Expansion of Hyperbolic functions
$ \, \sinh x = x + {x^3 \over 3!} + {x^5 \over 5!} + { x^7 \over 7!} + \cdots\, $ $ - \infty < x < \infty \qquad $
$ \, \cosh x = 1 + {x^2 \over 2!} + {x^4 \over 4!} + { x^6 \over 6!} + \cdots\, $ $ - \infty < x < \infty \qquad $
$ \, \tanh x = x - {x^3 \over 3} + {2x^5 \over 15} - { 17x^7 \over 315} + \cdots \ \frac{(-1)^{n-1}2^{2n}(2^{2n} -1)B_nx^{2n-1}}{(2n)!} + \cdots\, $ $ \vert x \vert < {\pi \over 2} \qquad $
$ \, \coth x = {1 \over x} + {x \over 3} - {x^3 \over 45} + { 2x^5 \over 945} + \cdots \frac{(-1)^{n-1}2^{2n}b_nx^{2n-1}}{(2n)!} + \cdots\, $ $ 0 < \vert x \vert < \pi \qquad $
$ \frac {1}{\cosh x} = 1 - {x2 \over 2} + {5x^4 \over 24} -{61x^6 \over 720} + \cdots \frac{(-1)^nE_nx^{2n}}{(2n)!} + \cdots $ $ \vert x \vert < {\pi \over 2} $
$ \frac{1}{\sinh x} = {1 \over x} - {x \over 6} + {7x^3 \over 360} - {31x^5 \over 15,120} + \cdots \frac{(-1)^n2(2^{2n-1}-1)B_nx^{2n-1}}{(2n)!} + \cdots $ $ 0 < \vert x \vert < \pi $
$ \operatorname{arsinh}\,x = \begin{cases} x - {x^3 \over 2 \cdot 3} + {1 \cdot 3 x^5 \cdot 2 \cdot 4 \cdot 5} - {1 \cdot 3 \cdot 5 x^7 \over 2 \cdot 4 \cdot 6 \cdot 7} + \cdots, & \left \vert x \right \vert < 1 \\ \left ( \ln \vert 2x \vert + {1 \over 2 \cdot 2 x^2} - {1 \cdot 3 \over 2 \cdot 4 \cdot 4x^4} + {1 \cdot 3 \cdot 5 \over 2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right ), & x \geqq 1\\ -\left ( \ln \vert 2x \vert + {1 \over 2 \cdot 2 x^2} - {1 \cdot 3 \over 2 \cdot 4 \cdot 4x^4} + {1 \cdot 3 \cdot 5 \over 2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right ), & x \leqq -1 \end{cases} $
$ \operatorname{arcosh} \,x = \begin{cases} \{ \ln (2x) - ( \frac{1}{2 \cdot 2x^2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac { 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} + \cdots ) \}, & \operatorname{arsinh}\,x > 0, x \geqq 1 \\ - \{ \ln (2x) - ( \frac{1}{2 \cdot 2x^2} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} + \frac { 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} + \cdots ) \}, & \operatorname{arsinh} \,x < 0, x \geqq 1 \end{cases} $
$ \operatorname{argth} \,x = x + { x^3 \over 5} + {x^5 \over 5 } + {x^7 \over 7 }+ \cdots $ $ \vert x \vert < 1 \qquad $
$ \operatorname{argcoth} \,x = {1 \over x} + { 1 \over 3x^3} + {1 \over 5x^5 } + {1 \over 7x^7 }+ \cdots $ $ \vert x \vert > 1 \qquad $
Various Series
$ \, e^{\sin x} = 1 + x + {x^2 \over 2} - {x^4 \over 8} - {x^5 \over 15} + \cdots\, $ $ - \infty < x < \infty $
$ \, e^{\cos x} = e \left ( 1 - {x^2 \over 2} + {x^4 \over 6} - {31x^6 \over 720} + \cdots \right ) \, $ $ - \infty < x < \infty $
$ \, e^{\tan x} = 1 + x + {x^2 \over 2} + {x^3 \over 2} + {3x^4 \over 8} + \cdots \, $ $ \vert x \vert < { \pi \over 2} $
$ e^x \sin x = x + x^2 + {2x^3 \over 3 } - {x^5 \over 30} - {x^6 \over 90} + \cdots + \frac{2^{n/2} \sin (n \pi /4)\ x^n}{n!} + \cdots $ $ - \infty < x < \infty $
$ e^x \cos x = 1 + x - {x^3 \over 3 } - {x^4 \over 6} + \cdots + \frac{2^{n/2} \cos (n \pi /4)\ x^n}{n!} + \cdots $ $ - \infty < x < \infty $
$ \ln \vert \sin x \vert = \ln \vert x \vert - {x^2 \over 6} - {x^4 \over 180} - {x^6 \over 2835} - \cdots - \frac{2^{2n-1}B_nx^{2n}}{n(2n)!} + \cdots $ $ 0 < \vert x \vert < \pi $
$ \ln \vert \cos x \vert = - {x^2 \over 2} - {x^4 \over 12} - {x^6 \over 45} - {17x^8 \over 2520} - \cdots - \frac{2^{2n-1}(2^{2n}-1)B_nx^{2n}}{n(2n)!} + \cdots $ $ \vert x \vert < {\pi \over 2} $
$ \ln \vert \tan x \vert = \ln \vert x \vert + {x^2 \over 3} + {7x^4 \over 90} + {62x^6 \over 2835}+ \cdots + \frac{2^{2n}(2^{2n-1}-1)B_nx^{2n}}{n(2n)!} + \cdots $ $ 0 < \vert x \vert < {\pi \over 2} $
$ \frac{\ln (1+x)}{1+x} = x - (1+ {1 \over 2})^{x^2} + (1 + {1 \over 2} + {1 \over 3})^{x^3} - \cdots $ $ \vert x \vert < 1 $
Series of Reciprocal Power Series
$ \text{if }\ y = c_1x +c_2x^3 +c_3x^3 + c_4x^4 + c_5x^5 + c_6x^6 + \cdots\,\qquad \text{then }\ x = C_1y+C_2y^2+C_3y^3+C_4y^4+C_5y^5+C_6y^6+\cdots $
$ \text{where }\ c_1C_1 = 1, \qquad c_1^3C_2= -c_2, \qquad c_1^7C_3 = 2c_2^2 - c_1c_3 $
$ c_1^7C_4 = 5c_1c_2c_3 - 5c_2^3 - c_2^2c_4, \qquad c_1^9C_5 = 6c_1^2c_2c_4 + $
$ c_1^{11}C_6 = 7 c_1^3c_2 c_5 + 84 c_1 c_2^3c_3 + 7c_1^3c_3c_4 - 28c_1^2c_2c_3^2 - c_1^4c/-6 - 28c_1^2c_2^2c_4 - 42c_2^5 $
Taylor Series of Two Variables function
$ \, f(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + $
$ {1 \over 2!} \left \{ (x-a)^2f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b)+(y-b)^2f_{yy}(a,b) \right \} + \cdots\, $
$ f_x(a,b),f_y(a,b) , \cdots \text {denote the partial derivatives with respect to } x ,\ y \cdots $

Go to Relevant Course Page: ECE 301

Go to Relevant Course Page: ECE 438

Go to Relevant Course Page: ECE 538

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett