(New page: Category:ECE301Spring2011Boutin Category:problem solving = Practice Question on Computing the Output of an LTI system by Convolution= The unit impulse response h[n] of a DT LTI sys...)
 
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]]
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Output of an LTI system by Convolution =
[[Category:problem solving]]
+
 
= Practice Question on Computing the Output of an LTI system by Convolution=
+
 
The unit impulse response h[n] of a DT LTI system is  
 
The unit impulse response h[n] of a DT LTI system is  
  
<math>h[n]= u[n-1]-u[n-101].  \ </math>
+
<math>h[n]= u[n-1]-u[n-101].  \ </math>  
  
Use convolution to compute the system's response to the input   
+
Use convolution to compute the system's response to the input  
 +
 
 +
<math>x[n]= \frac{1}{2^n} \ </math>
  
<math>x[n]= \frac{1}{2^n}  \ </math>
 
 
----
 
----
==Share your answers below==
+
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
+
== Share your answers below ==
 +
 
 +
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 +
 
 
----
 
----
===Answer 1===
+
 
Write it here.
+
=== Answer 1 ===
===Answer 2===
+
 
Write it here.
+
<math>y[n]=x[n]*h[n]=\sum_{k=- \infty}^\infty \frac{1}{2^k} (u[n-k-1]-u[n-k-101])=\sum_{k=- \infty}^\infty \frac{1}{2^k} u[n-k-1] - \sum_{k=- \infty}^\infty \frac{1}{2^k} u[n-k-101]</math>
===Answer 3===
+
 
Write it here.
+
but
 +
 
 +
<math>u[n-k-1]=\begin{cases}
 +
1,  & \mbox{if }[n-k-1] \ge 0 \\
 +
0, & \mbox{if }[n-k-1] < 0
 +
\end{cases} = \begin{cases}
 +
1,  & \mbox{if }k \le n-1 \\
 +
0, & \mbox{if }k > n-1
 +
\end{cases}</math>
 +
 
 +
and
 +
 
 +
<math>u[n-k-101]=\begin{cases}
 +
1,  & \mbox{if }[n-k-101] \ge 0 \\
 +
0, & \mbox{if }[n-k-101] < 0
 +
\end{cases} = \begin{cases}
 +
1,  & \mbox{if }k \le n-101 \\
 +
0, & \mbox{if }k > n-101
 +
\end{cases}</math>
 +
 
 +
so
 +
 
 +
<math>y[n] =  \sum_{k=- \infty}^{n-1} \frac{1}{2^k} - \sum_{k=- \infty}^{n-101} \frac{1}{2^k}</math>
 +
 
 +
I'm pretty sure it's right up to here, and it doesn't need to be divided into two cases, because there is no condition for k&lt;0. But I'm not sure how to solve this sum.  
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 19:28, 28 January 2011 (UTC)
 +
 
 +
:<span style="color: blue;"> TA's comment: Very good. I suggest that you flip the input signal for this problem and not the impulse response. The convolution will then be much easier. In order to compute summations, you may want to use geometric series' formulas.
 +
</span>
 +
 
 +
 
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
--[[User:Ahmadi|Ahmadi]] 22:49, 29 January 2011 (UTC)
 +
 
 +
=== Answer 2 ===
 +
 
 +
Note: <math>\sum_{k=m}^n ar^k=\frac{a(r^m-r^{n+1})}{1-r}.</math> (The general formula, more valuable than the specific ones professors tend to give)
 +
 
 +
<span class="texhtml">''y''[''n''] = ''h''[''n''] * ''x''[''n''] = ''x''[''n''] * ''h''[''n'']</span>
 +
 
 +
Change the arguments &amp; limits of the sum. Therefore, <math>\sum_{k=1}^{101} (1/2)^{n-k}=(1/2)^n * (1/2-(1/2)^{102})/(1/2)</math>
 +
 
 +
 
 +
([[User:Clarkjv|Clarkjv]] 22:34, 31 January 2011 (UTC)) <br>
 +
 
 +
=== Answer 3 ===
 +
 
 +
Write it here.  
 +
 
 
----
 
----
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
+
 
 +
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 +
 
 +
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Latest revision as of 10:20, 11 November 2011

Practice Question on Computing the Output of an LTI system by Convolution

The unit impulse response h[n] of a DT LTI system is

$ h[n]= u[n-1]-u[n-101]. \ $

Use convolution to compute the system's response to the input

$ x[n]= \frac{1}{2^n} \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ y[n]=x[n]*h[n]=\sum_{k=- \infty}^\infty \frac{1}{2^k} (u[n-k-1]-u[n-k-101])=\sum_{k=- \infty}^\infty \frac{1}{2^k} u[n-k-1] - \sum_{k=- \infty}^\infty \frac{1}{2^k} u[n-k-101] $

but

$ u[n-k-1]=\begin{cases} 1, & \mbox{if }[n-k-1] \ge 0 \\ 0, & \mbox{if }[n-k-1] < 0 \end{cases} = \begin{cases} 1, & \mbox{if }k \le n-1 \\ 0, & \mbox{if }k > n-1 \end{cases} $

and

$ u[n-k-101]=\begin{cases} 1, & \mbox{if }[n-k-101] \ge 0 \\ 0, & \mbox{if }[n-k-101] < 0 \end{cases} = \begin{cases} 1, & \mbox{if }k \le n-101 \\ 0, & \mbox{if }k > n-101 \end{cases} $

so

$ y[n] = \sum_{k=- \infty}^{n-1} \frac{1}{2^k} - \sum_{k=- \infty}^{n-101} \frac{1}{2^k} $

I'm pretty sure it's right up to here, and it doesn't need to be divided into two cases, because there is no condition for k<0. But I'm not sure how to solve this sum.

--Cmcmican 19:28, 28 January 2011 (UTC)

TA's comment: Very good. I suggest that you flip the input signal for this problem and not the impulse response. The convolution will then be much easier. In order to compute summations, you may want to use geometric series' formulas.




--Ahmadi 22:49, 29 January 2011 (UTC)

Answer 2

Note: $ \sum_{k=m}^n ar^k=\frac{a(r^m-r^{n+1})}{1-r}. $ (The general formula, more valuable than the specific ones professors tend to give)

y[n] = h[n] * x[n] = x[n] * h[n]

Change the arguments & limits of the sum. Therefore, $ \sum_{k=1}^{101} (1/2)^{n-k}=(1/2)^n * (1/2-(1/2)^{102})/(1/2) $


(Clarkjv 22:34, 31 January 2011 (UTC))

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics