(One intermediate revision by one other user not shown)
Line 1: Line 1:
= Practice Question on Computing the Output of an LTI system by Convolution =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Output of an LTI system by Convolution =
  
 
The unit impulse response h(t) of a DT LTI system is  
 
The unit impulse response h(t) of a DT LTI system is  
Line 11: Line 11:
 
----
 
----
  
== Share your answers below ==
+
== Share your answers below ==
  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
Line 17: Line 17:
 
----
 
----
  
=== Answer 1 ===
+
=== Answer 1 ===
  
 
<math>y(t)=h(t)*x(t)=\int_{-\infty}^\infty u(-\tau+1)e^{-2(t-\tau)}u(t-\tau)d\tau=e^{-2t}\int_{-\infty}^1 e^{2\tau}u(t-\tau)d\tau</math> <math> = \begin{cases}  
 
<math>y(t)=h(t)*x(t)=\int_{-\infty}^\infty u(-\tau+1)e^{-2(t-\tau)}u(t-\tau)d\tau=e^{-2t}\int_{-\infty}^1 e^{2\tau}u(t-\tau)d\tau</math> <math> = \begin{cases}  
Line 34: Line 34:
 
:*<span style="color: green;"> Instructor's comments: Great! That one was harder then the [[Output of LTI CT system by convolution no2 ECE301S11|previous practice problem]], and you still got it right. You should do very well on the test! -pm </span>
 
:*<span style="color: green;"> Instructor's comments: Great! That one was harder then the [[Output of LTI CT system by convolution no2 ECE301S11|previous practice problem]], and you still got it right. You should do very well on the test! -pm </span>
  
=== Answer 2 ===
+
=== Answer 2 ===
  
 
Write it here.  
 
Write it here.  
  
=== Answer 3 ===
+
=== Answer 3 ===
  
 
Write it here.  
 
Write it here.  

Latest revision as of 10:24, 11 November 2011

Practice Question on Computing the Output of an LTI system by Convolution

The unit impulse response h(t) of a DT LTI system is

$ h(t)= u( -t+1 ) \ $

Use convolution to compute the system's response to the input

$ x(t)= e^{-2 t }u(t). \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ y(t)=h(t)*x(t)=\int_{-\infty}^\infty u(-\tau+1)e^{-2(t-\tau)}u(t-\tau)d\tau=e^{-2t}\int_{-\infty}^1 e^{2\tau}u(t-\tau)d\tau $ $ = \begin{cases} e^{-2t}\int_{-\infty}^t e^{2\tau}d\tau, & \mbox{if }t \le 1 \\ e^{-2t}\int_{-\infty}^1 e^{2\tau}d\tau, & \mbox{if }t > 1 \end{cases} =\begin{cases} e^{-2t}\frac{e^{2t}}{2}, & \mbox{if }t \le 1 \\ e^{-2t}\frac{e^{2}}{2}, & \mbox{if }t > 1 \end{cases} $

$ y(t)=\frac{1}{2}\Bigg(u(1-t)+e^{-2(t-1)}u(t-1)\Bigg) $

--Cmcmican 21:19, 4 February 2011 (UTC)

  • Instructor's comments: Great! That one was harder then the previous practice problem, and you still got it right. You should do very well on the test! -pm

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin