(New page: Category:ECE301Spring2011Boutin Category:problem solving = Practice Question on Computing the Output of an LTI system by Convolution= The unit impulse response h(t) of a CT LTI sys...)
 
Line 14: Line 14:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
 
 +
<math>y(t)=x(t)*h(t)=\int_{-\infty}^{\infty} u(t)e^{\tau-t}u(t-\tau+3) d\tau</math>
 +
 
 +
but
 +
 
 +
<math>u(\tau)=
 +
\begin{cases}
 +
1,  & \mbox{if }\tau \ge 0 \\
 +
0, & \mbox{if }\tau < 0
 +
\end{cases}</math>
 +
 
 +
so
 +
 
 +
<math>y(t)=\int_{0}^{\infty} e^{-t} e^{\tau}u(t-\tau+3) d\tau=e^{-t} \int_{0}^{\infty} e^{\tau}u(t-\tau+3) d\tau</math>
 +
 
 +
but
 +
 
 +
<math>u(t-\tau+3)=
 +
\begin{cases}
 +
1,  & \mbox{if }(t-\tau+3) \ge 0 \\
 +
0, & \mbox{if }(t-\tau+3) < 0
 +
\end{cases} = \begin{cases}
 +
1,  & \mbox{if }\tau \le t+3 \\
 +
0, & \mbox{if }\tau > t+3
 +
\end{cases}</math>
 +
 
 +
so
 +
 
 +
<math>y(t)=\begin{cases}
 +
e^{-t} \int_{0}^{t+3} e^{\tau}d\tau,  & \mbox{if }t > -3 \\
 +
0, & \mbox{if }t \le -3
 +
\end{cases} = e^{-t}(e^{t+3}-1)u(t+3)</math>
 +
 
 +
 
 +
<math>y(t)=(e^3-e^{-t})u(t+3)\,</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 19:56, 28 January 2011 (UTC)
 +
 
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 15:56, 28 January 2011

Practice Question on Computing the Output of an LTI system by Convolution

The unit impulse response h(t) of a CT LTI system is

$ h(t) = e^{-t} u(t+3). \ $

Use convolution to compute the system's response to the input

$ x(t)=u(t). \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ y(t)=x(t)*h(t)=\int_{-\infty}^{\infty} u(t)e^{\tau-t}u(t-\tau+3) d\tau $

but

$ u(\tau)= \begin{cases} 1, & \mbox{if }\tau \ge 0 \\ 0, & \mbox{if }\tau < 0 \end{cases} $

so

$ y(t)=\int_{0}^{\infty} e^{-t} e^{\tau}u(t-\tau+3) d\tau=e^{-t} \int_{0}^{\infty} e^{\tau}u(t-\tau+3) d\tau $

but

$ u(t-\tau+3)= \begin{cases} 1, & \mbox{if }(t-\tau+3) \ge 0 \\ 0, & \mbox{if }(t-\tau+3) < 0 \end{cases} = \begin{cases} 1, & \mbox{if }\tau \le t+3 \\ 0, & \mbox{if }\tau > t+3 \end{cases} $

so

$ y(t)=\begin{cases} e^{-t} \int_{0}^{t+3} e^{\tau}d\tau, & \mbox{if }t > -3 \\ 0, & \mbox{if }t \le -3 \end{cases} = e^{-t}(e^{t+3}-1)u(t+3) $


$ y(t)=(e^3-e^{-t})u(t+3)\, $

--Cmcmican 19:56, 28 January 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang