Line 24: Line 24:
  
 
--[[User:Cmcmican|Cmcmican]] 23:30, 30 March 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 23:30, 30 March 2011 (UTC)
 
+
:INstructor's comment: Reality check: the only signal whose Fourier transform is a constant is an impulse. So your answer cannot possibly be correct. -pm
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Revision as of 04:02, 31 March 2011


Practice Question on the Nyquist rate of a signal

Is the following signal band-limited? (Answer yes/no and justify your answer.)

$ x(t)= e^{-j \frac{\pi}{2}t} \frac{\sin (3 \pi t)}{\pi t} \ $>

If you answered "yes", what is the Nyquist rate for this signal?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal X (\omega) = \mathfrak {F} \Big(e^{-j \frac{\pi}{2}t}\Big) * \mathfrak F \Big(\frac{\sin (3 \pi t)}{\pi t}\Big)=2\pi\delta(\omega-\frac{\pi}{2}) * \Big(u(\omega+3\pi)-u(\omega-3\pi)\Big) = 2\pi \Big(u(\frac{\pi}{2}+3\pi)-u(\frac{\pi}{2}-3\pi)\Big) $

$ \mathcal X (\omega) = 2\pi $

So this signal is not band limited.

As such, there can be no Nyquist rate for this signal.

--Cmcmican 23:30, 30 March 2011 (UTC)

INstructor's comment: Reality check: the only signal whose Fourier transform is a constant is an impulse. So your answer cannot possibly be correct. -pm

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang