Line 15: Line 15:
 
===Answer 1===
 
===Answer 1===
 
a) <math>|e^{2n}|=\sqrt{(e^{2n})^2}=e^{2n}</math>
 
a) <math>|e^{2n}|=\sqrt{(e^{2n})^2}=e^{2n}</math>
 +
:<span style="color:green"> Instructor's comments: Yes, this is correct, but I would like to propose an alternative justification:  </span>
 +
:<math>{\color{green}|e^{2n}|=\sqrt{(e^{2n})(e^{2n})^*}=\sqrt{e^{2n}e^{2n}}=e^{2n}}</math>
 +
:<span style="color:green">where <math>{\color{green}~^*}</math> denotes the complex conjgate.-pm </span>
  
 
b) <math>|e^{2jn}|=|cos(2n)+jsin(2n)|=\sqrt{cos(2n)^2+sin(2n)^2}=\sqrt{1}=1</math>
 
b) <math>|e^{2jn}|=|cos(2n)+jsin(2n)|=\sqrt{cos(2n)^2+sin(2n)^2}=\sqrt{1}=1</math>

Revision as of 15:14, 11 January 2011

Compute the Magnitude of the following discrete-time signals

a) $ x[n]=e^{2n} $

b) $ x[n]=e^{2jn} $

c) $ x[n]=j^n $

What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a) $ |e^{2n}|=\sqrt{(e^{2n})^2}=e^{2n} $

Instructor's comments: Yes, this is correct, but I would like to propose an alternative justification:
$ {\color{green}|e^{2n}|=\sqrt{(e^{2n})(e^{2n})^*}=\sqrt{e^{2n}e^{2n}}=e^{2n}} $
where $ {\color{green}~^*} $ denotes the complex conjgate.-pm

b) $ |e^{2jn}|=|cos(2n)+jsin(2n)|=\sqrt{cos(2n)^2+sin(2n)^2}=\sqrt{1}=1 $

c) $ |j^n|=|e^{nj\pi/2}|=|cos(n\pi/2)+jsin(n\pi/2)|=\sqrt{cos(n\pi/2)^2+sin(n\pi/2)^2}=\sqrt{1}=1 $

Answer 2

write it here.

Answer 3

write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett